Skip to main content

The Biochemistry and Metabolic Regulation of Carbon Metabolism and CO2 Fixation in Purple Bacteria

  • Chapter
Anoxygenic Photosynthetic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 2))

Summary

Purple photosynthetic bacteria exhibit great diversity in the metabolism of simple carbon compounds. In this chapter, the reactions and metabolic schemes that the organisms, particularly purple nonsulfur bacteria, employ to break down and/or assimilate one-carbon, two-carbon, three-carbon, and four-carbon compounds and sugars is examined. Knowledge of the biochemistry and physiology of carbon metabolism and its molecular control has benefited somewhat from the application of recombinant DNA approaches, yet there are significant gaps in our understanding of how catabolic and anabolic reaction sequences are integrated. By contrast, great advances have been made relative to the biochemistry of CO2 fixation, due primarily to recent enzymological, molecular, and structural studies of the key enzyme, Rubis CO. Indeed the enzyme from Rhodospirillum rubrum has become the paradigm for such work. The ability to prepare recombinant enzymes that catalyze additional key steps of CO2 fixation should result in similar advances concerning these proteins in the future. Facile genetic manipulation of mutant Rhodobacter and Rhodospirillum strains has already resulted in the uncovering of alternative CO2 assimilatory routes that replace the Calvin cycle, and prospects for gaining an understanding of the biochemistry and molecular control of both schemes should follow. The latter studies probably would not be possible with other organisms, further attesting to the versatility of the purple nonsulfur bacteria for investigating basic metabolic processes. This chapter considers the current state of our knowledge of carbon dioxide fixation and carbon metabolism in purple bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albers H and Gottschalk G (1976) Acetate metabolism in Rhodopseudomonas gelatinosa and several other Rhodospirillaceae. Arch Microbiol 111: 45–49

    Article  CAS  PubMed  Google Scholar 

  • Anderson L and Fuller RC (1967a) Photosynthesis in Rhodospirillum rubrum. II. Photoheterotrophic carbon dioxide fixation. Plant Physiol 42: 491–496

    CAS  PubMed  Google Scholar 

  • Anderson L and Fuller RC (1967b) Photosynthesis in Rhodospirillum rubrum. III. Metabolic control of reductive pentose phosphate and tricarboxylic acid cycle enzymes. Plant Physiol 42: 497–502

    CAS  PubMed  Google Scholar 

  • Andersson I, Knight S, Schneider G, Lindqvist Y, Lundqvist T, Branden C-I and Lorimer GH (1989) Crystal structure of the active site of ribulose-bisphosphate carboxylase. Nature 337: 229–234

    Article  CAS  Google Scholar 

  • Andrews TJ (1988) Catalysis by cyanobacterial ribulose-bisphosphate carboxylase large subunits in the complete absence of small subunits. J Biol Chem 263: 12213–12219

    CAS  PubMed  Google Scholar 

  • Asami S and Akazawa T (1974) Oxidative formation ofglycolic acid in photosynthesizing cells of Chromatium. Plant Cell Physiol 15: 571–576

    CAS  Google Scholar 

  • Barraclough R and Ellis RJ (1980) Protein synthesis in chloroplasts. IX. Assembly of newly-synthesized large subunits into ribulose bisphosphate carboxylase in isolated intact pea chloroplasts. Biochim Biophys Acta 608: 19–31

    CAS  PubMed  Google Scholar 

  • Beatty JT and Gest H (1981a) Generation of succinyl-coenzyme A in photosynthetic bacteria. Arch Microbiol 129: 335–340

    Article  CAS  Google Scholar 

  • Beatty JT and Gest H (1981b) Biosynthetic and bioenergetic functions of citric acid cycle reactions in Rhodopseudomonas capsulata. J Bacteriol 148: 584–593

    CAS  PubMed  Google Scholar 

  • Berry JA, Lorimer GH, Pierce J, Seemann JR, Meek J and Freas S (1987) Isolation, identification, and synthesis of 2-carboxyarabinitol 1-phosphate, a diurnal regulator of ribulose-bisphosphate carboxylase activity. Proc Natl Acad Sci USA 84: 734–738

    CAS  Google Scholar 

  • Blasco R, Cardenas J and Castillo F (1989) Acetate metabolism in purple non-sulfur bacteria. FEMS Microbiol Lett 58: 129–132

    Article  CAS  Google Scholar 

  • Blasco R, Cardenas J and Castillo F (1991) Regulation of isocitrate lyase in Rhodobacter capsulatus E1F1. Current Microbiol 22: 73–76

    CAS  Google Scholar 

  • Bonam D and Ludden PW (1987) Purification and characterization of carbon monoxide dehydrogenase, a nickel, zinc, iron-sulfur protein, from Rhodospirillum rubrum. J Biol Chem 262: 2980–2987

    CAS  PubMed  Google Scholar 

  • Bonam D, Murrell SA and Ludden PW (1984) Carbon monoxide dehydrogenase from Rhodospirillum rubrum. J Bacteriol 159: 693–699

    CAS  PubMed  Google Scholar 

  • Bonam D, Lehman L, Roberts GP and Ludden PW (1989) Regulation of carbon monoxide dehydrogenase and hydrogenase in Rhodospirillum rubrum: Effects of CO and oxygen on synthesis and activity. J Bacteriol 171: 3102–3107

    CAS  PubMed  Google Scholar 

  • Brostedt E and Nordlund S (1991) Purification and partial characterization of a pyruvate oxidoreductase from the photosynthetic bacterium Rhodospirillum rubrum grown under nitrogen-fixing conditions. Biochem J 279: 155–158

    CAS  PubMed  Google Scholar 

  • Buchanan BB, Bachofen R and Arnon DI (1964) Role of ferredoxin in the reductive assimilation of CO2 and acetate by extracts of the photosynthetic bacterium, Chromatium. Proc Natl Acad Sci USA 52: 839–847

    CAS  PubMed  Google Scholar 

  • Buchanan BB, Evans MCW and Arnon DI (1967) Ferredoxin-dependent carbon assimilation in Rhodospirillum rubrum. Arch Mikrobiol 59: 32–40

    Article  CAS  PubMed  Google Scholar 

  • Charlier HA Jr, Runquist JA and Miziorko HM (1994) Evidence supporting catalytic roles for aspartate residues in phosphoribulokinase. Biochemistry 33: 9343–9350

    Article  CAS  PubMed  Google Scholar 

  • Chen C and Gibbs M (1992) Some enzymes and properties of the reductive carboxylic acid cycle are present in the green alga Chlamydomonas reinhardtii F-60. Plant Physiol 98: 535–539

    CAS  Google Scholar 

  • Christeller JT and Laing WA (1978) A kinetic study of ribulose bisphosphate carboxylase from the photosynthetic bacterium Rhodospirillum rubrum. Biochem J 173: 467–473

    CAS  PubMed  Google Scholar 

  • Chung SY, Yaguchi T, Nishihara H, Igarashi Y, Kodama T (1993) Purification of form L2 RubisCO from a marine obligate autotrophic hydrogen-oxidizing bacterium, Hydrogenovibrio marinus strain MH-110. FEMS Microbiol Lett 109: 49–54

    Article  CAS  PubMed  Google Scholar 

  • Claassen PAM Zehnder AJB (1986) Isocitrate lyase activity in Thiobacillus versutus grown anaerobically on acetate and nitrate. J Gen Microbiol 132: 3179–3185

    CAS  Google Scholar 

  • Conrad R and Schlegel HG (1974) Different pathways for fructose and glucose utilization in Rhodopseudomonas capsulata and demonstration of 1-phosphofructokinase in phototrophic bacteria. Biochim Biophys Acta 358: 221–225

    CAS  PubMed  Google Scholar 

  • Conrad R and Schlegel HG (1977a) Influence of aerobic and phototrophic growth conditions on the distribution of glucose and fructose carbon into the Entner-Doudoroff and Embden-Meyerhof pathways in Rhodopseudomonas sphaeroides. J Gen Microbiol 101: 277–290

    CAS  Google Scholar 

  • Conrad R Schlegel HG (1977b) Different degradation pathways for glucose and fructose in Rhodopseudomonas capsulatus. Arch Microbiol 112: 39–48

    Article  CAS  PubMed  Google Scholar 

  • Conway T (1992) The Entner-Doudoroff pathway: History, physiology and molecular biology. FEMS Microbiol Rev 103: 1–27

    CAS  Google Scholar 

  • Cook LS and Tabita FR (1988) Oxygen regulation of ribulose 1,5-bisphosphate carboxylase activity in Rhodospirillum rubrum. J Bacteriol 170: 5468–5472

    CAS  PubMed  Google Scholar 

  • Cook LS, Im H and Tabita FR (1988) Oxygen-dependent inactivation of ribulose 1,5-bisphosphate carboxylase/oxygenase in crude extracts of Rhodospirillum rubrum and establishment of a model inactivation system with purified enzyme. J Bacteriol 170: 5473–5478

    CAS  PubMed  Google Scholar 

  • Dow CS (1987) CO2 fixation in Rhodopseudomonas blastica. In: Van Verseveld HW and Duine J (eds) Microbial growth on C1 compounds, pp 28–37. Martinus Nijhoff Publishers, Dordrecht

    Google Scholar 

  • Eidels L and Preiss J (1970) Carbohydrate metabolism in Rhodopseudomonas capsulata: Enzyme titers, glucose metabolism, and polyglucose polymer synthesis. Arch Biochem Biophys 140: 75–89

    CAS  PubMed  Google Scholar 

  • Ellis RJ (1979) The most abundant protein in the world. Trends Biochem Sci 4: 241–244

    Article  CAS  Google Scholar 

  • Ellis RJ (1990) Molecular chaperones: The plant connection. Science 250: 954–959

    CAS  Google Scholar 

  • English RS, Williams CA, Lorbach SC and Shively JM (1992) Two forms of ribulose-1,5-bisphosphate carboxylase/oxygenase from Thiobacillus denitrificans. FEMS Microbiol Lett 94: 111–120

    Article  CAS  Google Scholar 

  • Ensign SA and Ludden PW (1991) Characterization of the CO oxidation/H2 evolution of Rhodospirillum rubrum: Role of a 22 kDa iron-sulfur protein in mediating electron transfer between carbon monoxide dehydrogenase and hydrogenase. J Biol Chem 266: 18395–18403

    CAS  PubMed  Google Scholar 

  • Evans MCW, Buchanan BB and Arnon DI (1966) A new ferredoxin dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci USA 55: 928–934

    CAS  PubMed  Google Scholar 

  • Falcone DL and Tabita FR (1991) Expression of endogenous and foreign ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) genes in a RubisCO deletion mutant of Rhodobacter sphaeroides. J Bacteriol 173: 2099–2108

    CAS  PubMed  Google Scholar 

  • Falcone DL and Tabita FR (1993a) Expression and regulation of Bradyrhizobium japonicum and Xanthobacter flavus CO2 fixation genes in a photosynthetic bacterial host. J Bacteriol 175: 866–869

    CAS  PubMed  Google Scholar 

  • Falcone DL and Tabita FR (1993b) Complementation analysis and regulation of CO2 fixation gene expression in a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion strain of Rhodospirillum rubrum. J Bacteriol 175: 5066–5077

    CAS  PubMed  Google Scholar 

  • Falcone DL, Quivey Jr, RG and Tabita FR (1988) Transposon mutagenesis and physiological analysis of strains containing inactivated form I and form II ribulose bisphosphate carboxylase/oxygenase genes in Rhodobacter sphaeroides. J Bacteriol 170: 5–11

    CAS  PubMed  Google Scholar 

  • Ferreyra RG, Soncini FC and Viale AM (1993) Cloning, characterization, and functional expression in Escherichia coli of chaperonin (groESL) genes from the phototrophic sulfur bacterium Chromatium vinosum. J Bacteriol 175: 1514–1423

    CAS  PubMed  Google Scholar 

  • Fuchs G (1989) Alternative pathways of autotrophic CO2 fixation. In: Schlegel HG and Bowien B (eds) Autotrophic Bacteria, pp 365–382. Science Tech Publishers, Madison

    Google Scholar 

  • Fuller RC (1978) Photosynthetic carbon metabolism in the green and purple bacteria. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 691–705. Plenum Press, New York

    Google Scholar 

  • Fuller RC and Gibbs M (1959) Intracellular and phylogenetic distribution of ribulose 1,5-diphosphate carboxylase and D-glyceraldehyde 3-phosphate dehydrogenases. Plant Physiol 34: 324–329

    CAS  Google Scholar 

  • Fuller RC, Smillie RM, Sisler EC and Kornberg HL (1961) Carbon metabolism in Chromatium. J. Biol. Chem. 236: 2140–2149

    CAS  PubMed  Google Scholar 

  • Gest H (1951) Metabolic patterns in photosynthetic bacteria. Bacteriol Rev 15: 183–210

    CAS  PubMed  Google Scholar 

  • Gest H (1981) Evolution of the citric acid cycle and respiratory energy conversion in prokaryotes. FEMS Microbiol Lett 12: 209–215

    Article  CAS  Google Scholar 

  • Gest H and Kamen MD (1949) Photoproduction of molecular hydrogen by Rhodospirillum rubrum. Science 109: 558–559

    CAS  Google Scholar 

  • Gibson JL and Tabita FR (1977) Different molecular forms of D-ribulose-1,5-bisphosphate carboxylase from Rhodopseudomonas sphaeroides. J Biol Chem 252: 943–949

    CAS  PubMed  Google Scholar 

  • Gibson JL and Tabita FR (1979) Activation of ribulose 1,5-bisphosphate carboxylase from Rhodopseudomonas sphaeroides: Probable role of the small subunit. J Bacteriol 140: 1023–1027

    CAS  PubMed  Google Scholar 

  • Gibson JL and Tabita FR (1985) Structural differences in the catalytic subunits of form I and form II ribulose 1,5-bis-phosphate carboxylase/oxygenase from Rhodopseudomonas sphaeroides. J Bacteriol 164: 1188–1193

    CAS  PubMed  Google Scholar 

  • Gibson JL and Tabita FR (1986) Isolation of the Rhodopseudomonas sphaeroides form I ribulose 1,5-bisphosphate carboxylase/oxygenase large and small subunit genes and expression of the active hexadecameric enzyme in Escherichia coli. Gene 44: 271–278

    Article  CAS  PubMed  Google Scholar 

  • Gibson JL and Tabita FR (1987) Organization of phosphoribulokinase and ribulose bisphosphate carboxylase/oxygenase genes in Rhodopseudomonas (Rhodobacter) sphaeroides. J Bacteriol 169: 3685–3690

    CAS  PubMed  Google Scholar 

  • Gibson JL and Tabita FR (1988) Localization and mapping of CO2 fixation genes within two gene clusters in Rhodobacter sphaeroides. J Bacteriol 170: 2153–2158

    CAS  PubMed  Google Scholar 

  • Gibson JL and Tabita FR (1993) Nucleotide sequence and functional analysis of cbbR, a positive regulator of the Calvin cycle operons of Rhodobacter sphaeroides. J Bacteriol 175: 5778–5784

    CAS  PubMed  Google Scholar 

  • Gibson JL, Chen C-H, Tower PA and Tabita FR (1990) The form II fructose 1,6-bisphosphatase and phosphoribulokinase genes form part of a large operon in Rhodobacter sphaeroides: Primary structure and insertional mutagenesis analysis. Biochemistry 29: 8085–8093

    Article  CAS  PubMed  Google Scholar 

  • Gibson JL, Falcone DL and Tabita FR (1991) Nucleotide sequence, transcriptional analysis, and expression of genes encoded within the Form I CO2 fixation operon of Rhodobacter sphaeroides. J Biol Chem 266: 14646–14653

    CAS  PubMed  Google Scholar 

  • Glover J, Kamen MD and Van Genderen H (1952) Studies on the metabolism of photosynthetic bacteria. XII. Comparative light and dark metabolism of acetate and carbonate by Rhodospirillum rubrum. Arch Biochem Biophys 35: 343–408

    Google Scholar 

  • Goloubinoff P, Gatenby AA and Lorimer GH (1989a) GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337: 44–47

    Article  CAS  PubMed  Google Scholar 

  • Goloubinoff P, Christeller JT, Gatenby AA and Lorimer GH (1989b) Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature 342: 884–889

    Article  CAS  PubMed  Google Scholar 

  • Gorrell TE and Uffen RL (1977) Fermentative metabolism of pyruvate by Rhodospirillum rubrum after anaerobic growth in darkness. J Bacteriol 131: 533–543

    CAS  PubMed  Google Scholar 

  • Gutteridge S, Parry MAJ, Burton S, Keys AJ, Mudd A, Feeney J, Servaites JC and Pierce JA (1986) A nocturnal inhibitor of carboxylation in leaves. Nature 324: 274–276

    Article  CAS  Google Scholar 

  • Hallenbeck P and Kaplan S (1987) Cloning of the gene for phosphoribulokinase activity from Rhodobacter sphaeroides and its expression in Escherichia coli. J Bacteriol 169: 3669–3678

    CAS  PubMed  Google Scholar 

  • Hallenbeck PL, Lerchen R, Hessler P, and Kaplan S (1990) Phosphoribulokinase activity and regulation of CO2 fixation critical for photosynthetic growth of Rhodobacter sphaeroides. J Bacteriol 172: 1749–1761

    CAS  PubMed  Google Scholar 

  • Hart BA and Gibson J (1971) Ribulose-5-phosphate kinase from Chromatium sp. strain D. Arch Biochem Biophys 144: 308–321

    Article  CAS  PubMed  Google Scholar 

  • Hartman FC (1992) Structure-function relationships of ribulose bisphosphate carboxylase/oxygenase as suggested by site-directed mutagenesis. In: Shewry PR and Gutteridge S (eds) Plant Protein Engineering, Vol 1, pp 61–92. Cambridge University Press, London

    Google Scholar 

  • Hartman FC and Harpel MR (1993) Chemical and genetic probes of the active site of d-ribulose-1,5-bisphosphate carboxylase/ oxygenase: A retrospecive based on the three-dimensional structure. Adv Enzmol 67: 1–75

    CAS  Google Scholar 

  • Hartman FC and Harpel MR (1994) Structure, function, regulation, and assembly of d-ribulose 1,5-bisphosphate carboxylase/ oxygenase. Ann Rev Biochem 63: 197–234

    CAS  PubMed  Google Scholar 

  • Hartman FC and Lee EH (1989) Examination of the function of active site lysine 329 of ribulose-bisphosphate carboxylase/ oxygenase as revealed by the proton exchange reaction. J Biol Chem 246: 11784–11789

    Google Scholar 

  • Heda GD and Madigan MT (1988) Thermal properties and oxygenase activity of ribulose 1,5-bisphosphate carboxylase from the thermophilic purple bacterium Chromatium tepidum. FEMS Microbiol Lett 51: 45–50

    Article  CAS  Google Scholar 

  • Heda DG and Madigan MT (1989) Purification and characterization of the thermostable ribulose-1,5-bisphosphate carboxylase/oxygenase from the thermophilic purple bacterium Chromatium tepidum. Eur J Biochem 184: 313–319

    Article  CAS  PubMed  Google Scholar 

  • Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW and Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333: 330–334

    Article  CAS  PubMed  Google Scholar 

  • Hicughi M and Kikuchi G (1969) Induced formation of ribulose 1,5-diphosphate carboxylase in Rhodopseudomonas spheroides with particular concern to its relation with chromatophore formation. Plant Cell Physiol 10: 149–160

    Google Scholar 

  • Hirsch P (1968) Photosynthetic bacterium growing under carbon monoxide. Nature 217: 555–556

    CAS  PubMed  Google Scholar 

  • Hoare DS (1963) The photo-assimilation of acetate by Rhodospirillum rubrum. Biochem J 87: 284–301

    CAS  PubMed  Google Scholar 

  • Holo H (1989) Chloroflexus aurantiacus secretes 3-hydroxy-propionate, a possible intermediate in the assimilation of CO2 fixation and acetate. Arch Microbiol 151: 252–256

    Article  CAS  Google Scholar 

  • Hurlbert RE and Lascelles J (1963) Ribulose bisphosphate carboxylase in Thiorhodaceae. J Gen Microbiol 33: 445–458

    CAS  PubMed  Google Scholar 

  • Ivanovsky RN, Krasilnikova EN and Fal YI (1993) A pathway of the autotrophic CO2 fixation in Chloroflexus aurantiacus. Arch Microbiol 159: 257–264

    Article  CAS  Google Scholar 

  • Joint IR, Morris I and Fuller RC (1972) Purification of a complex of alkaline fructose 1,6-bisphosphatase and phosphoribulokinase from Rhodospirillum rubrum. J Biol Chem 247: 4833–4838

    CAS  PubMed  Google Scholar 

  • Jordan DB and Chollet R (1985) Subunit dissociation and reconstitution of ribulose-1,5-bisphosphate carboxylase from Chromatium vinosum. Arch Biochem Biophys 236: 487–496

    Article  CAS  PubMed  Google Scholar 

  • Jordan DB and Ogren WL (1981) Species variation in the specificity of ribulose bisphosphate carboxylase/oxygenase. Nature 291: 513–515

    Article  CAS  Google Scholar 

  • Jouanneau Y and Tabita FR (1986) Independent regulation of form I and form II ribulose bisphosphate carboxylase-oxygenase in Rhodopseudomonas sphaeroides. J Bacteriol 165: 620–624

    CAS  PubMed  Google Scholar 

  • Jouanneau Y and Tabita FR (1987) In vivo regulation of form I ribulose 1,5-bisphosphate carboxylase/oxygenase from Rhodopseudomonas sphaeroides. Arch Biochem Biophys 254: 290–303

    Article  CAS  PubMed  Google Scholar 

  • Kerby RL, Hong SS, Ensign SA, Coppoc LJ, Ludden PW and Roberts GP (1992) Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system. J Bacteriol 174: 5284–5294

    CAS  PubMed  Google Scholar 

  • Khanna S, Kelley BC and Nicholas DJD (1981) Oxygen inhibition of the photoassimilation of CO2 in Rhodopseudomonas capsulata. Arch Microbiol 128: 421–423

    Article  CAS  Google Scholar 

  • Klemme J-H (1973) Allosterische kontrolle der pyruvatkinase aus Rhodospirillum rubrum durch anorganisches phosphat und zucherphosphatester. Arch Mikrobiol 90: 305–322

    Article  CAS  PubMed  Google Scholar 

  • Klemme J-H (1974) Modulation by fumarate of a Pi-insensitive pyruvate kinase from Rhodopseudomonas capsulata. Arch Microbiol 100: 57–63

    Article  CAS  PubMed  Google Scholar 

  • Knight M (1962) The photometabolism of propionate by Rhodospirillum rubrum. Biochem J 84: 170–185

    CAS  PubMed  Google Scholar 

  • Knight S, Andersson I, and Branden C-I (1990) Crystallographic analysis of ribulose 1,5-bisphosphate carboxylase from spinach at 2.4 A resolution. J Mol Biol 215: 113–160

    CAS  PubMed  Google Scholar 

  • Kobayashi H and Akazawa T (1982a) Biosynthetic mechanism of ribulose 1,5-bisphosphate carboxylase in the purple photosynthetic bacterium Chromatium vinosum. I. Inducible formation. Arch Biochem Biophys 214: 531–539

    CAS  PubMed  Google Scholar 

  • Kobayashi H and Akazawa T (1982b) Biosynthetic mechanism of ribulose-1,5-bisphosphate carboxylase in the purple photosynthetic bacterium, Chromatium vinosum. II. Biosynthesis of constituent subunits. Arch Biochem Biophys 214: 540–549

    CAS  PubMed  Google Scholar 

  • Kobayashi H, Viale AM, Takabe T, Akazawa T, Wada K, Shinozaki K, Kobayashi K and Sugiura M (1991) Sequence and expression of genes encoding the large and small subunits of ribulose 1,5-bisphosphate carboxylase/oxygenase from Chromatium vinosum. Gene 97: 55–62

    CAS  PubMed  Google Scholar 

  • Kohlmiller EF and Gest H (1951) A comparative study of light and dark fermentations of organic acids by Rhodospirillum rubrum. J Bacteriol 61: 269–282

    CAS  PubMed  Google Scholar 

  • Kondratievea EN (1979) Interrelation between modes of carbon assimilation and energy production in phototrophic purple and green bacteria. In: Quayle JR (ed) International Review of Biochemistry, Microbial Biochemistry, Vol 21, pp 117–175. University Press, Baltimore

    Google Scholar 

  • Kondratieva EN, Zhukov VG, Ivanovsky RN, Petushkova, YP and Monosov EZ (1976) The capacity of phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis. Arch Microbiol 108: 287–292

    Article  CAS  PubMed  Google Scholar 

  • Kornberg HL and Lascelles J. (1960) The formation of isocitratase by the Athiorhodaceae. J Gen Microbiol 23: 511–517

    CAS  PubMed  Google Scholar 

  • Kossmann J, Klintworth R and Bowien B (1989) Sequence analysis of the chromosomal and plasmid genes encoding phosphoribulokinase from Alcaligenes eutrophus. Gene 85: 247–252

    Article  CAS  PubMed  Google Scholar 

  • Krieger TJ, Mende-Muller L, Miziorko HM (1987) Phosphoribulokinase: Isolation and sequence determination of the cysteine-containing active-site peptide modified by 5_-p-fluorosulfonylbenzoyladenosine. Biochim Biophys Acta 915: 112–119

    CAS  Google Scholar 

  • Laing WA, Ogren WL and Hageman RH (1974) Regulation of soybean net photosynthetic CO2 fixation by the interaction of CO2, O2, and ribulose 1,5-diphosphate carboxylase. Plant Physiol 54: 678–685

    CAS  Google Scholar 

  • Larimer FW and Soper TS (1993) Overproduction of Anabaena 7120 ribulose-bisphosphate carboxylase/oxygenase in Escherichia coli. Gene 126: 85–92

    Article  CAS  PubMed  Google Scholar 

  • Lascelles J (1960) The formation of ribulose 1∶5-diphosphate carboxylase by growing cultures of Athiorhodaceae. J Gen Microbiol 23: 499–510

    CAS  PubMed  Google Scholar 

  • Lee B and Tabita FR (1990) Purification of recombinant ribulose-1,5-bisphosphate carboxylase/oxygenase large subunits suitable for reconstitution and assembly of active L8S8 enzyme. Biochemistry 29: 9352–9357

    CAS  PubMed  Google Scholar 

  • Lee B, Read BA and Tabita FR (1991) Catalytic properties of recombinant octameric, hexadecameric, and heterologous cyanobacterial/bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophys 291: 263–269

    CAS  PubMed  Google Scholar 

  • Levine RL, Oliver CN, Fulks RM and Stadtman ER (1981) Turnover of bacterial glutamine synthetase: Oxidative inactivation precedes proteolysis. Proc Natl Acad Sci USA 78: 2120–2124

    CAS  PubMed  Google Scholar 

  • Lloyd JC, Horsnell PR, Dyer TA and Raines CA (1991) Structure and sequence of wheat phosphoribulokinase gene. Plant Mol Biol 17: 167–168

    Article  CAS  PubMed  Google Scholar 

  • Lueking D, Pike L and Sojka G (1976) Glycerol utilization by a mutant of Rhodopseudomonas capsulata. J Bacteriol 125: 750–752

    CAS  PubMed  Google Scholar 

  • Madigan MT (1988) Microbiology, physiology, and ecology of phototrophic bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms, pp 39–111. John Wiley and Sons, Inc, New York

    Google Scholar 

  • Madigan MT (1990) Photocatabolism of acetone by nonsulfur purple bacteria. FEMS Microbiol Lett 71: 281–286

    Article  CAS  Google Scholar 

  • Madigan MT and Gest H (1979) Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemolithotrophically in darkness with H2 as the energy source. J Bacteriol. 137: 524–530

    CAS  PubMed  Google Scholar 

  • Madigan MT, Cox JC and Gest H (1980) Physiology of dark fermentative growth of Rhodopseudomonas capsulata. J Bacteriol 142: 908–915

    CAS  PubMed  Google Scholar 

  • Mann NH and Turner AM (1988) Covalent modification of ribulose 1,5-bisphosphate carboxylase/ oxygenase in Rhodomicrobium vannielii. Molecular Microbiology 2: 427–432

    CAS  PubMed  Google Scholar 

  • McFadden BA, Torres-Ruiz JA and Franceschi VR (1989) Localization of ribulose-bisphosphate carboxylase-oxygenase and its putative binding protein in the cell envelope of Chromatium vinosum. Planta 178: 297–302

    Article  CAS  Google Scholar 

  • Meijer WG, Enequist HG, Terpstra P and Dijkhuizen L (1990) Nucleotide sequences of the genes encoding fructose-bisphosphatase and phosphoribulokinase from Xanthobacter flavus H4-14. J Gen Microbiol 136: 2225–2230

    CAS  PubMed  Google Scholar 

  • Milanez S and Mural RJ (1988) Cloning and sequencing of cDNA encoding the mature form of phosphoribulokinase from spinach. Gene 66: 55–63

    Article  CAS  PubMed  Google Scholar 

  • Miziorko HM and Lorimer GH (1983) Ribulose-1,5-bisphosphate carboxylase-oxygenase. Ann Rev Biochem 52: 507–535

    CAS  PubMed  Google Scholar 

  • Morell MK, Kane HJ and Andrews TJ (1990) Carboxyterminal deletion mutants of ribulosebisphosphate carboxylase from Rhodospirillum rubrum. FEBS Lett 265: 41–45

    Article  CAS  PubMed  Google Scholar 

  • Muller FM (1933) On the metabolism of the purple sulfur bacteria in organic media. Arch Mikrobiol 4: 131–166.

    Article  CAS  Google Scholar 

  • Nargang F, McIntosh L and Somerville C (1984) Nucleotide sequence of the ribulosebisphosphate carboxylase gene from Rhodospirillum rubrum. Mol Gen Genet 193: 220–224

    Article  CAS  Google Scholar 

  • Nielsen AM and Sojka GA (1979) Photoheterotrophic utilization of acetate by the wild type and an acetate-adapted mutant of Rhodopseudomonas capsulata. Arch Microbiol 120: 39–42

    CAS  Google Scholar 

  • Nielsen AM, Rampsch BJ and Sojka GA (1979) Regulation of isocitrate lyase in a mutant of Rhodopseudomonas capsulata adapted to growth on acetate. Arch Microbiol 120: 43–46

    CAS  Google Scholar 

  • Padan E (1979) Facultative anoxygenic photosynthesis in cyanobacteria. Ann Rev Plant Physiol 30: 27–40

    CAS  Google Scholar 

  • Payne J and Morris JG (1969a) Acetate utilisation by Rhodopseudomonas spheroides. FEBS Lett. 4:52–54

    Article  CAS  PubMed  Google Scholar 

  • Payne J and Morris JG (1969b) Pyruvate carboxylase in Rhodopseudomonas spheroides. J Gen Microbiol 59: 97–101

    CAS  PubMed  Google Scholar 

  • Pelroy RA and Bassham JA (1972) Photosynthetic and dark carbon metabolism in unicellular blue-green algae. Arch Mikrobiol 86: 25–38

    Article  CAS  PubMed  Google Scholar 

  • Pelroy RA and Bassham JA. (1976) Kinetics of light-dark CO2 fixation and glucose assimilation by Aphanocapsa. J Bacteriol 128: 633–643

    CAS  PubMed  Google Scholar 

  • Pike L and Sojka GA (1975) Glycerol dissimilation in Rhodopseudomonas sphaeroides. J Bacteriol 124: 1101–1105

    CAS  PubMed  Google Scholar 

  • Portis Jr AR (1992) Regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activity. Ann Rev Plant Physiol 43: 415–437

    CAS  Google Scholar 

  • Qadri SMH and Hoare DS (1967) Pyruvate decarboxylase in photosynthetic bacteria. Biochim Biophys Acta 148: 304–306

    CAS  Google Scholar 

  • Qadri SMH and Hoare DS (1968) Formic hydrogenlyase and the photoassimilation of formate by a strain of Rhodopseudomonas palustris. J Bacteriol 95: 2344–2357

    CAS  PubMed  Google Scholar 

  • Quayle, JR and Keech DB (1959) Carboxydismutase activity in formate-and oxalate-grown Pseudomonas oxalaticus (strain OX1). Biochim Biophys Acta 31: 587–588

    Article  CAS  PubMed  Google Scholar 

  • Quayle JR and Pfennig N (1975) Utilization of methanol by Rhodospirillaceae. Arch Microbiol 102: 193–198

    Article  CAS  PubMed  Google Scholar 

  • Ranty B, Lundqvist T, Schneider G, Madden M, Howard R and Lorimer G (1990) Truncation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Rhodospirillum rubrum affects the holoenzyme assembly and activity. EMBO J 9:1365–1373

    CAS  PubMed  Google Scholar 

  • Read BA and Tabita FR (1992a) A hybrid ribulosebisphosphate carboxylase/oxygenase enzyme exhibiting a substantial increase in substrate specificity factor. Biochemistry 31: 5553–5560

    CAS  PubMed  Google Scholar 

  • Read BA and Tabita FR (1992b) Catalytic properties of a hybrid ribulose bisphosphate carboxylase/oxygenase enzyme containing cyanobacterial large subunits and diatom small subunits. FASEB J 6, A209

    Google Scholar 

  • Read BA and Tabita FR (1994) High substrate factor ribulose bisphosphate carboxylase/oxygenase from eukaryotic marine algae and properties of recombinant cyanobacterial rubisco cotaining ‘algal’ residue modifications. Arch Biochem Biophys 312: 210–218

    Article  CAS  PubMed  Google Scholar 

  • Richardson DJ, King GF, Kelly DJ, McEwan AG, Ferguson SJ and Jackson JB (1988) The role of auxiliary oxidants in maintaining redox balance during phototrophic growth of Rhodobacter capsulatus on propionate or butyrate. Arch Microbiol 150: 131–137

    CAS  Google Scholar 

  • Rindt K-P and Ohmann E (1969) NADH and AMP as allosteric effectors ofribulose-5-phosphate kinase in Rhodopseudomonas sphaeroides. Biochem Biophys Res Commun 36: 357–364

    Article  CAS  PubMed  Google Scholar 

  • Rippel S and Bowien B (1984) Phosphoribulokinase from Rhodopseudomonas acidophila. Arch Microbiol 139: 207–212

    Article  CAS  Google Scholar 

  • Roesler KR and Ogren WL (1990) Chlamydomonas reinhardtii phosphoribulokinase. Plant Physiol 93: 188–193.

    CAS  Google Scholar 

  • Roy H, Bloom M, Milos P and Monroe M (1982) Studies on the assembly of large subunits of ribulose bisphosphate carboxylase in isolated pea chloroplasts. J Cell Biol 94: 20–27

    Article  CAS  PubMed  Google Scholar 

  • Roesler KR, Marcotte BL and Ogren WL (1992) Functional importance of arginine 64 in Chlamydomonas reinhardtii phosphoribulokinase. Plant Physiol. 98: 1285–1289

    CAS  Google Scholar 

  • Sahm H, Cox RB and Quayle JR (1976) Metabolism of methanol by Rhodopseudomonas acidophila. J Gen Microbiol 94: 313–322

    CAS  PubMed  Google Scholar 

  • Saier, Jr MH, Feucht BU and Roseman S (1971) Phosphoenolpyruvate-dependent fructose phosphorylation in photosynthetic bacteria. J Biol Chem 246: 7819–7821

    CAS  PubMed  Google Scholar 

  • Sandbaken MG, Runquist JA, Barbieri JT and Miziorko HM (1992) Identification of the phosphoribulokinase sugar phosphate binding domain. Biochemistry 31: 3715–3719

    Article  CAS  PubMed  Google Scholar 

  • Sarles LS and Tabita FR (1983) Derepression of the synthesis of D-ribulose 1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. J Bacteriol 153: 458–464

    CAS  PubMed  Google Scholar 

  • Schedel M, Klemme J-H and Schlegel HG (1975) Regulation of C3-enzymes in facultative phototrophic bacteria. The cold-labile pyruvate kinase of Rhodopseudomonas sphaeroides. Arch Microbiol 103: 237–245

    Article  CAS  PubMed  Google Scholar 

  • Schneider G, Lindqvist Y and Lundqvist T (1990) Crystallo-graphic refinement and structure of ribulose-15,-bisphosphate carboxylase from Rhodospirillum rubrum at 1.7 A resolution. J Mol Biol 211: 989–1008

    Article  CAS  PubMed  Google Scholar 

  • Schön G and Voelskow H (1976) Pyruvate fermentation in Rhodospirillum rubrum after transfer from aerobic to anaerobic conditions in the dark. Arch Microbiol 107: 87–92

    Article  PubMed  Google Scholar 

  • Schreuder HC, Knight S, Curmi PMG, Andersson I, Cascio D, Sweet RM, Bradnon C-I, and Eisenberg D (1993) Crystal structure of activated tobacco RubisCO complexed with the reaction-intermediate analog 2-carboxy-arabinitol 1,5-bisphosphate. Protein Science 2, 1136–1146

    CAS  PubMed  Google Scholar 

  • Shively JM, Davidson E and Marrs BL (1984) Derepression of the synthesis of the intermediate and large forms of ribulose-1,5-bisphosphate carboxylase/oxygenase in Rhodopseudomonas capsulata. Arch Microbiol 138: 233–236

    Article  CAS  PubMed  Google Scholar 

  • Smrcka AV, Bohnert HJ and Jensen RG (1991) Modulation of the tight binding of carboxyarabinitol 1,5-bisphosphate to the large subunit of ribulose 1,5-bisphosphate carboxylase/ oxygenase. Arch Biochem Biophys 286: 14–19

    CAS  PubMed  Google Scholar 

  • Somerville CR and Somerville SC (1984) Cloning and expression of the Rhodospirillum rubrum ribulosebisphosphate carboxylase gene in E. coli. Mol Gen Genet 193: 214–219

    Article  CAS  Google Scholar 

  • Spear N and Sojka G (1984) Conversion of two distinct Rhodopseudomonas capsulata isolates to the glycerol-utilizing phenotype. FEMS Microbiol Letts 22: 259–263

    CAS  Google Scholar 

  • Spreitzer RJ (1993) Genetic dissection of RubisCO structure and function. Plant Mol Biol 44: 411–434

    CAS  Google Scholar 

  • Springgate CF and Stachow CS (1972a) Fructose 1,6-diphosphatase from Rhodopseudomonas palustris. I. Purification and properties. Arch Biochem Biophys 152: 1–12

    CAS  PubMed  Google Scholar 

  • Springgate CF and Stachow CS (1972b) Fructose 1,6-diphosphatase from Rhodopseudomonas palustris. II. Regulatory properties. Arch Biochem Biophys 152: 13–20

    CAS  PubMed  Google Scholar 

  • Stanier RY, Adelberg EA, and Ingrahatn JL (1976) The Microbial World, Fourth Edition pp 546–548 Englewood Cliffs, New Jersey

    Google Scholar 

  • Stein JL and Felbeck H (1993) Kinetic and physical properites of a recombinant RubisCO from a chemoautotrophic endosymbiont. Molec Mar Biol Biotech 2: 280–290

    CAS  Google Scholar 

  • Stoppani AOM, Fuller RC and Calvin M (1955) Carbon dioxide fixation by Rhodopseudomonas capsulatus. J Bacteriol 69: 491–501

    CAS  PubMed  Google Scholar 

  • Störro I and McFadden BA (1981) Glycolate excretion by Rhodospirillum rubrum. Arch Microbiol 129: 317–320

    Google Scholar 

  • Störro I and McFadden BA (1983) Ribulose bisphosphate carboxylase/oxygenase in toluene-permeabilized Rhodospirillum rubrum. Biochem J 212: 45–54

    PubMed  Google Scholar 

  • Strauss G, Eisenreich W, Bacher A and Fuchs G (1992) C-NMR study of autotrophic CO2 fixation pathways in the sulfur-reducing archaebacterium Thermoproteus neutrophilus and in the phototrophic eubacterium Chloroflexus aurantiacus. Eur J Biochem 205: 853–866

    Article  CAS  PubMed  Google Scholar 

  • Su X and Bogorad L (1991) A residue substitution in phosphoribulokinase of Synechocystis PCC 6803 renders the mutant light-sensitive. J Biol Chem 266: 23698–23705

    CAS  PubMed  Google Scholar 

  • Suwanto A and Kaplan S (1989) Physical and genetic mapping of the Rhodobacter sphaeroides 2.4.1 genome: Genome size, fragment identification, and gene localization. J Bacteriol 171: 5840–584

    CAS  PubMed  Google Scholar 

  • Szymona M Doudoroff M (1960) Carbohydrate metabolism in Rhodopseudomonas spheroides J Gen Microbiol 22: 167–183

    CAS  PubMed  Google Scholar 

  • Tabita FR (1980) Pyridine nucleotide control and subunit structure of phosphoribulokinase from photosynthetic bacteria. J Bacteriol 143: 1275–1280

    CAS  PubMed  Google Scholar 

  • Tabita FR (1987) Carbon dioxide fixation and its regulation in cyanobacteria. In: Fay P and Van Baalen C (eds) The Cyanobacteria, pp 96–117. Elsevier, Amsterdam

    Google Scholar 

  • Tabita FR (1988) Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol Rev 52: 155–189

    CAS  PubMed  Google Scholar 

  • Tabita FR (1994) The biochemistry and molecular regulation of carbon dioxide metabolism in cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 437–467. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Tabita FR and Colletti C (1979) Carbon dioxide assimilation in cyanobacteria: Regulation of ribulose 1,5-bisphosphate carboxylase. J Bacteriol 140: 452–458

    CAS  PubMed  Google Scholar 

  • Tabita FR and McFadden BA (1972) Regulation of ribulose-1,5-diphosphate carboxylase by 6-phospho-D-gluconate. Biochem Biophys Res Commun 48: 1153–1159

    Article  CAS  PubMed  Google Scholar 

  • Tabita FR and McFadden BA (1974a) D-Ribulose 1,5-diphosphate carboxylase from Rhodospirillum rubrum. I. Levels, purification, and effect of metallic ions. J Biol Chem 249: 3453–3458

    CAS  PubMed  Google Scholar 

  • Tabita FR and McFadden BA (1974b) D-Ribulose 1,5-diphosphate carboxylase from Rhodospirillum rubrum. II. Quaternary structure, composition, catalytic and immunological properties. J Biol Chem 249: 3459–3464

    CAS  PubMed  Google Scholar 

  • Tabita FR, Gibson JL, Mandy WJ and Quivey, Jr RG (1986) Synthesis and assembly of a novel recombinant ribulose bisphosphate carboxylase/oxygenase. Bio/Technology 4: 138–141

    Article  CAS  Google Scholar 

  • Tabita FR, Gibson JL, Bowien B, Dijkhuizen L and Meijer WG (1992) Uniform designation for genes of the Calvin-Benson-Bassham reductive pentose phosphate pathway of bacteria. FEMS Microbiol Lett 99: 107–110

    CAS  Google Scholar 

  • Terlesky KC and Tabita FR (1991) Purification and characterization of the chaperonin 10 and chaperonin 60 proteins from Rhodobacter sphaeroides. Biochemistry 30: 8181–8186

    Article  CAS  PubMed  Google Scholar 

  • Thiele HH (1968) Die verwertung einfacher organischer substrate durch Thiorhodaceae. Arch Mikrobiol 60: 124–138

    Article  CAS  PubMed  Google Scholar 

  • Torres-Ruiz JA and McFadden BA (1985) Isolation of L8 and L8SR forms of ribulose bisphosphate carboxylase/oxygenase from Chromatium vinosum. Arch Microbiol 142: 55–60

    Article  CAS  PubMed  Google Scholar 

  • Torres-Ruiz J and McFadden BA (1987) The nature of L8 and L8S8 forms of ribulose bisphosphate carboxylase/oxygenase from Chromatium vinosum. Arch Biochem Biophys 254: 63–68

    CAS  PubMed  Google Scholar 

  • Torres-Ruiz JA and McFadden BA (1989) A homolog of ribulose bisphosphate carboxylase/oxygenase-binding protein in Chromatium vinosum. Arch Biochem Biophys 261: 196–204

    Google Scholar 

  • Torres-Ruiz JA and McFadden BA (1992) Purification and characterization of chaperonin 10 from Chromatium vinosum. Arch Biochem Biophys 295: 172–179

    CAS  PubMed  Google Scholar 

  • Turner AM and Mann NH (1986) Protein phosphorylation in Rhodomicrobium vannielii. J Gen Microbiol 132: 3433–3440

    CAS  Google Scholar 

  • Uffen RL (1976) Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole source of carbon and energy source. Proc Natl Acad Sci USA 73: 3298–3302

    CAS  PubMed  Google Scholar 

  • Uffen RL (1983) Metabolism of carbon monoxide by Rhodopseudomonas gelatinosis: Cell growth and properties of the oxidation system. J Bacteriol 155: 956–965

    CAS  PubMed  Google Scholar 

  • Uffen RL and Wolfe RS (1970) Anaerobic growth of purple nonsulfur bacteria under dark conditions. J Bacteriol 104: 462–472

    CAS  PubMed  Google Scholar 

  • van Niel CB (1941) The bacterial photosyntheses and their importance for the general problem of photosynthesis. Adv Enzymol 1: 263–328

    Google Scholar 

  • van Niel CB (1944) The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bacteriol Rev 8: 1–118

    PubMed  Google Scholar 

  • Viale AM, Kobayashi H, Takabe T and Akazawa T (1985) Expression of genes for subunits of plant-type RubisCO from Chromatium and production of the enzymatically active molecule in Escherichia coli. FEBS Lett 192: 283–288

    Article  CAS  PubMed  Google Scholar 

  • Viale AM, Kobayashi H and Akazawa T (1989) Expressed genes for plant-type ribulose 1,5-bisphosphate carboxylase/oxygenase in the photosynthetic bacterium Chromatium vinosum, which possess two complete sets of the genes. J Bacteriol 171: 2391–2400

    CAS  PubMed  Google Scholar 

  • Viale AM, Kobayashi H, and Akazawa T (1990) Distinct properties of Escherichia coli products of plant-type ribulose-1,5-bisphosphate carboxylase/oxygenase directed by two sets of genes from the photosynthetic bacterium Chromatium vinosum. J Biol Chem 265: 18383–18392

    Google Scholar 

  • Viitanen PV, Lubben TH, Reed J, Goloubinoff P, O’Keefe DP and Lorimer GH (1990) Chaperonin-facilitated refolding of ribulosebisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are K+ dependent. Biochemistry 29: 5665–5671

    Article  CAS  PubMed  Google Scholar 

  • Wang X and Song H (1989) Allosteric regulation of the state of adenylylation of glutamine synthetase in permeabilized preparations of Rhodopseudomonas sphaeroides. Sci China Ser B 32: 960–969

    CAS  Google Scholar 

  • Wang X and Tabita FR (1992a) Reversible inactivation and characterization of purified inactivated form I ribulose 1,5-bisphosphate carboxylase/oxygenase of Rhodobacter sphaeroides. J Bacteriol 174: 3593–3600

    CAS  PubMed  Google Scholar 

  • Wang X and Tabita FR (1992b) Interaction between ribulose 1,5-bisphosphate carboxylase/oxygenase activity and the ammonia assimilatory system of Rhodobacter sphaeroides. J Bacteriol 174: 3601–3606

    CAS  PubMed  Google Scholar 

  • Wang X and Tabita FR (1992c) Interaction of inactivated and active ribulose 1,5-bisphosphate carboxylase/oxygenase of Rhodobacter sphaeroides with nucleotides and the chaperonin 60 (GroEL) protein. J Bacteriol 174: 3607–3611

    CAS  PubMed  Google Scholar 

  • Wang X, Falcone DL and Tabita FR (1993a) Reductive pentose phosphate-independent CO2 fixation in Rhodobacter sphaeroides and evidence that RubisCO activity serves to maintain the redox balance of the cell. J Bacteriol 175: 3372–3379

    CAS  PubMed  Google Scholar 

  • Wang X, Modak HV, and Tabita FR (1993b) Photolitho-autotrophic growth and control of fixation in Rhodobacter sphaeroides and Rhodospirillum rubrum in the absence of ribulose bisphosphate carboxylase/oxygenase. J Bacteriol 175: 5066–5077

    Google Scholar 

  • Watson GMF, Mann NH, MacDonald GA and Dunbar B (1990) Identification and characterization of a GroEL homologue in Rhodobacter sphaeroides. FEMS Microbiol Lett 72: 349–354

    Article  CAS  Google Scholar 

  • Weaver PF, Wall JD and Gest H (1975) Characterization of Rhodopseudomonas capsulata. Arch Microbiol 105: 207–216

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB, Martin MN and Tabita FR (1979) Activation and regulation of ribulose bisphosphate carboxylase-oxygenase in the absence of small subunits. J Biol Chem 254: 10184–10189

    CAS  PubMed  Google Scholar 

  • Widdell F, Schnell S, Heising S, Ehrenreich A, Assmus B and Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362: 834–836

    Google Scholar 

  • Willison JC (1988) Pyruvate and acetate metabolism in the photosynthetic bacterium Rhodobacter capsulatus. J Gen Microbiol 134: 2429–2439

    CAS  Google Scholar 

  • Wood HG (1991) Life with CO or CO2 and H2 as a source of carbon and energy. FASEB J. 5: 156–163

    CAS  PubMed  Google Scholar 

  • Wu L-F, Reizer A, Reizer J, Cai B, Tomich JM and Saier, MH Jr (1991) Nucleotide sequence of the Rhodobacter capsulatus fruK gene, which encodes fructose-1-phosphate kinase: Evidence for a kinase superfamily including both phospho-fructokinases of Escherichia coli. J Bacteriol. 173: 3117–3127

    CAS  PubMed  Google Scholar 

  • Wu L-F and Saier MH Jr (1990) Nucleotide sequence of the fruA gene, encoding the fructose permease of the Rhodobacter capsulatus phosphotransferase system, and analyses of the deduced protein sequence. J Bacteriol 172: 7167–7178

    CAS  PubMed  Google Scholar 

  • Wu L-F, Tonich JM, and Saier MH Jr (1990) Structure and evolution of a multidomain, multiphosphoryl transfer protein: Nucleotide sequence of the fruB(HI) gene in Rhodobacter capsulatus and comparisons with homologous genes from other organisms. J Mol Biol 213: 687–703

    CAS  PubMed  Google Scholar 

  • Yoch DC and Lindstrom ES (1968) Nicotinamide adenine dinucleotide-dependent formate dehydrogenase from Rhodopseudomonas palustris. Arch Mikrobiol 67: 182–186

    Google Scholar 

  • Zeilstra-Ryalls J, Fayet O and Georgopoulos C. (1991) The universally conserved GroE (Hsp60) chaperonins. Ann Rev Microbiol 45: 301–325

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tabita, F.R. (1995). The Biochemistry and Metabolic Regulation of Carbon Metabolism and CO2 Fixation in Purple Bacteria. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_41

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_41

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics