Skip to main content

Investigation of Photochemical Paths by a Combined Theoretical and Experimental Approach

  • Chapter
Strategies and Applications in Quantum Chemistry

Part of the book series: Topics in Molecular Organization and Engineering ((MOOE,volume 14))

Conclusion

The aim of the present work was to show that, while awaiting the development of efficient quantum and statistical mechanical procedures able to provide qualitatively and quantitatively satisfactory descriptions of both static and dynamic aspects of photoreactions in condensed phase, at the present time some useful results can be obtained by combining traditional quantum-chemical calculations of potential energy surfaces with specially selected photophysical and photochemical measurements. This simple strategy consists in leading the theoretical description and the experimental analysis to a point where their direct comparison is freed from most arbitrariness factors. For example, with reference to photoreactions where bulky groups perform large amplitude motions combined with substantial changes in electronic distribution (like that reported in section 3), the work should go as far as to obtain kinetic parameters cleared of the solvent viscosity effects and compare them with those deducible from the calculated potential energy surfaces corrected for the solvation effects in a solvent of similar dielectric constant. Procedures of this type can serve a dual purpose: 1) to state to what extent the photoreaction mechanism and dynamics may be controlled by the polarity or the viscosity of the solvent, 2) to test the calculated intramolecular potential surfaces. As regards point 2) the reported study on the trans-cis photoisomerism of BMPC gave clear evidence for the soundness of the CS INDO method as well as the reasonableness of the model adopted to estimate the effects of the solvent polarity. On this basis, and the results of several other applications, we can assert that the CS INDO CI technique is a fairly effective and supple tool for dealing with the static (electronic) aspects of photoprocesses, especially those involving large conjugated molecules such as, for example, pigments and dyes having central roles in biological systems or technological devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Salem and C. Rowland, Angew. Chem. Int. Ed. Engl. 11, 92 (1972).

    Article  CAS  Google Scholar 

  2. J. Michl, Mol. Photochem. 4, 257 (1972).

    CAS  Google Scholar 

  3. L. Salem, Electrons in Chemical Reactions: First Principales. Wiley, New York, ch. 3 (1982)

    Google Scholar 

  4. V. Bonacic-Koutecky, J. Koutecky and J. Michl, Angew. Chem. Int. Ed. Engl. 26, 170 (1987).

    Google Scholar 

  5. J. Michl and V. Bonacic-Koutecky, Electronic Aspects of Organic Photochemistry, Wiley, New York (1990).

    Google Scholar 

  6. W. Rettig, Angew. Chem. Int. Ed. Engl. 25, 971 (1986).

    Article  Google Scholar 

  7. J. Michl, in: Modern Theoretical Chemistry. Vol. 8, G.A. Segal Ed. Plenum Press, New York, ch.3 (1977).

    Google Scholar 

  8. A.R. Gregory and D.F. Williams, J. Phys. Chem. 83, 2652 (1979).

    CAS  Google Scholar 

  9. F. Momicchioli, I. Baraldi and M.C. Bruni, Chem. Phys. 70, 161 (1982).

    Article  CAS  Google Scholar 

  10. F. Momicchioli, I. Baraldi and M.C. Bruni, Chem. Phys. 82, 229 (1983).

    Article  CAS  Google Scholar 

  11. L. Salem and W.D. Stohrer, J. Chem. Soc. Chem. Commun. 140 (1975).

    Google Scholar 

  12. V. Sundström and T. Gillbro, Chem. Phys. Lett. 109, 538 (1984).

    Article  Google Scholar 

  13. E. Lippert, W. Rettig, V. Bonacic-Koutecky, F. Heisel and J.A. Miehé, Adv. Chem. Phys. 68, 1 (1987).

    CAS  Google Scholar 

  14. P.F. Barbara and W. Jarzeba, Ace. Chem. Res. 21, 195 (1988).

    CAS  Google Scholar 

  15. D.H. Waldeck, Chem Rev. 91, 415 (1991).

    Article  CAS  Google Scholar 

  16. G. Ponterini and M. Caselli, Ber. Bunsenges. Phys. Chem. 96, 564 (1992).

    CAS  Google Scholar 

  17. I. Baraldi, F. Momicchioli and G. Ponterini, J. Mol. Struct. 110, 187 (1984).

    Google Scholar 

  18. G. Bartocci, F. Masetti, U. Mazzucato, A. Spalletti, I. Baraldi and F. Momicchioli, J. Phys. Chem. 91, 4733 (1987).

    Article  CAS  Google Scholar 

  19. F. Momicchioli, I. Baraldi and E. Fischer, J. Photochem. Photobiol. A: Chem. 48, 95 (1989).

    Article  CAS  Google Scholar 

  20. U. Mazzucuto and F. Momicchioli, Chem. Rev. 91, 1679 (1991).

    Google Scholar 

  21. I. Baraldi and G. Ponterini J. Mol. Struct. 122, 287 (1985).

    Google Scholar 

  22. I. Baraldi and G. Ponterini and F. Momicchioli, J. Chem. Soc. Faraday II 83, 2139 (1987)

    CAS  Google Scholar 

  23. I. Baraldi, M.C. Bruni, M. Caselli and G. Ponterini, J. Chem. Soc. Faraday II 85, 65 (1989).

    CAS  Google Scholar 

  24. F. Momicchioli, I. Baraldi and G. Berthier, Chem. Phys. 123, 103 (1988).

    Article  CAS  Google Scholar 

  25. F. Momicchioli, I. Baraldi, G. Ponterini and G. Berthier, Spectrochim. Acta 46A, 775 (1990).

    CAS  Google Scholar 

  26. I. Baraldi, A. Carnevali, F. Momicchioli and G. Ponterini, Chem. Phys. 160, 85 (1992).

    Article  CAS  Google Scholar 

  27. S. Marguet, J.C. Mialocq, P. Millie, G. Berthier and F. Momicchioli, Chem. Phys. 160, 265 (1992); S. Marguet, D. Sc Thesis, University of Paris Sud, n.1936 (1992)

    Article  CAS  Google Scholar 

  28. F. Momicchioli, I. Baraldi, A. Carnevali, M. Caselli and G. Ponterini, Coord. Chem. Rev. 125, 301 (1993).

    Article  CAS  Google Scholar 

  29. S. Diner, J.P. Malrieu and P. Claverie, Theoret. Chim. Acta 13, 1 (1969).

    Article  CAS  Google Scholar 

  30. For a general review of the PCILO method see: J.P. Malrieu, in: Modern Theoretical Chemistry, Vol. 7, G.A. Segal Ed. Plenum Press, New York, ch.3 (1977).

    Google Scholar 

  31. G. Del Re, Theoret. Chim. Acta 1, 188 (1963).

    Article  Google Scholar 

  32. J. Langlet, Theoret. Chim. Acta 27, 223 (1972).

    Article  CAS  Google Scholar 

  33. J. Langlet and J.P. Malrieu, Theoret. Chim. Acta 30, 59 (1973).

    Article  CAS  Google Scholar 

  34. D. Perahia and A. Pullman, Chem. Phys. Lett. 19, 73 (1973).

    Article  CAS  Google Scholar 

  35. B. Huron, J.P. Malrieu and P. Rancurel, J. Chem. Phys. 58, 5745 (1973)

    Article  CAS  Google Scholar 

  36. M.C. Bruni, F. Momicchioli, I. Baraldi and J. Langlet, Chem. Phys. Lett. 36, 484 (1975)

    Article  CAS  Google Scholar 

  37. I. Baraldi, M.C. Bruni, F. Momicchioli, J. Langlet and J.P. Malrieu, Chem. Phys. Lett. 51, 493 (1977)

    Article  CAS  Google Scholar 

  38. M. Martin, R. Carbo, C. Petrongolo and J. Tomasi, J. Am. Chem. Soc. 97, 1938 (1975)

    Google Scholar 

  39. J. Douady, V. Barone, Y. Ellinger and R. Subra, Int. J. Quantum Chem. 17, 211 (1980).

    Article  CAS  Google Scholar 

  40. O. Gropen and H.M. Seip, Chem. Phys. Lett. 11, 445 (1971).

    Article  CAS  Google Scholar 

  41. J.A. Pople and D.L. Beveridge, Appropximate Molecular Orbital Theory, McGraw-Hill, New York (1970).

    Google Scholar 

  42. J. Del Bene and H.H. Jaffé, J. Chem. Phys. 48, 1807 (1968); 48, 4050 (1968); 49, 1221 (1968).

    Google Scholar 

  43. J. Ridley and M. Zerner, Theoret. Chim. Acta 32, 111 (1973); 42, 223 (1976).

    Article  CAS  Google Scholar 

  44. I. Baraldi, E. Gallinella and F. Momicchioli, J. Chim. Phys. 83, 653 (1986).

    CAS  Google Scholar 

  45. I. Baraldi, A. Carnevali, F. Momicchioli and G. Ponterini, Spectrochim. Acta 49A, 471 (1993)

    CAS  Google Scholar 

  46. S.A. Pozzoli, A. Rastelli and M. Tedeschi, J. Chem. Soc. Faraday II 69, 256 (1973)

    CAS  Google Scholar 

  47. S. Evangelisti, J.P. Daudey and J.P. Malrieu, Chem. Phys. 75, 91 (1983)

    Article  CAS  Google Scholar 

  48. P. Birner, H.J. Köhler and C. Weiss, Chem. Phys. Lett. 27, 347 (1974).

    CAS  Google Scholar 

  49. R. Benedix, P. Birner, F. Birnstock, H. Henning and H.J. Hofmann, J. Mol. Struct. 51, 99 (1979).

    Article  CAS  Google Scholar 

  50. J.L. Rivail and D. Rinaldi, Chem Phys. 18, 233 (1976).

    Article  CAS  Google Scholar 

  51. R. Constanciel and O. Tapia, Theoret. Chim. Acta 48, 75 (1978).

    Article  CAS  Google Scholar 

  52. S. Miertus, E. Scrocco and J. Tomasi, Chem. Phys. 55, 117 (1981).

    CAS  Google Scholar 

  53. D. Heidrich, U. Göring, W. Förster and C. Weiss, Tetrahedron 35, 651 (1979).

    Article  CAS  Google Scholar 

  54. V. Bonacic-Koutecky, P. Bruckmann, P. Hiberty, J. Koutecky, C. Leforestier and L. Salem, Angew. Chem. Int. Ed. Engl. 14, 575 (1975).

    Google Scholar 

  55. G. Ponterini and F. Momiccheli, Chem. Phys. 151, 111 (1991)

    Article  CAS  Google Scholar 

  56. F. Dietz, W. Förster, C. Weiss, A. Tadjer and N. Tyutyulkov, J. Signalaufz. Mater. 9, 177 (1981).

    CAS  Google Scholar 

  57. F. Dietz and S.K. Rentsch, Chem. Phys. 96, 145 (1985).

    Article  CAS  Google Scholar 

  58. M. Arvis and J.C. Mialocq, J. Chem. Soc. Faraday II 75, 415 (1979).

    CAS  Google Scholar 

  59. C. Carre, C. Reichart and D.J. Lougnot, J. Chim. Phys. 84, 577 (1987).

    CAS  Google Scholar 

  60. A.S. Tatikolov, L.A. Shvedova, N.A. Derevyanko, A.A. Ishchenko and V.A. Kuzmin, Chem. Phys. Lett. 190, 291 (1992)

    Article  CAS  Google Scholar 

  61. F. Barigelletti, /. Phys. Chem. 92, 3679 (1988)

    CAS  Google Scholar 

  62. R.A. Velapoldi and K.D. Mielenz, NBS Sp. Publication 260. Washington (1980)

    Google Scholar 

  63. D.F. Eaton, /. Photochem. Photobiol. B: Biology 2, 523 (1988)

    CAS  Google Scholar 

  64. D. Ben-Amotz and C.B. Harris, J. Chem. Phys. 86, 4856 (1987)

    CAS  Google Scholar 

  65. S.L. Murov, “Handbook of Photochemistry”, M.Dekker. New York, 1973.

    Google Scholar 

  66. K. Schöffel, F. Dietz and T. Krossner, Chem. Phys. Lett. 172, 187 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Momicchioli, F., Baraldi, I., Carnevali, A., Ponterini, G. (1996). Investigation of Photochemical Paths by a Combined Theoretical and Experimental Approach. In: Ellinger, Y., Defranceschi, M. (eds) Strategies and Applications in Quantum Chemistry. Topics in Molecular Organization and Engineering, vol 14. Springer, Dordrecht. https://doi.org/10.1007/0-306-46930-8_27

Download citation

  • DOI: https://doi.org/10.1007/0-306-46930-8_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3837-6

  • Online ISBN: 978-0-306-46930-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics