Skip to main content

Abstract

The deposition of amyloid is associated with several neurodegenerative diseases including Alzheimer’s disease and the prion diseases. To probe the relationship between amino acid sequence and the propensity to form amyloid, we studied a combinatorial library of sequences designed de novo. All sequences in the library were designed to share an identical pattern of alternating polar and nonpolar residues as would be consistent with the formation of amphiphilic β-sheet structure. While the polar/nonpolar patterning was identical for all members of the library, the precise identities of these side chains were not constrained and were varied combinatorially. The de novo sequences were expressed in bacteria and purified. Biophysical characterization revealed that the proteins self-assemble into large oligomers visible by electron microscopy as amyloid-like fibrils. Like natural amyloid, the de novo fibrils are composed of β-sheet secondary structure and bind the diagnostic dye, Congo Red. Thus, an alternating pattern of polar and non polar residues is sufficient to cause designed sequences to assemble into amyloid-like fibrils. This finding prompted us to question the distribution of alternating patterns in the sequences of natural proteins. Analysis of a large database of natural protein sequences revealed that alternating patterns occur less frequently than other patterns with similar compositions. The under-representation of alternating patterns in natural proteins, coupled with the observation that such patterns promote assembly of amyloid-like structures in de novo proteins, suggests that sequences of alternating polar and nonpolar amino acids are inherently amyloidogenic and consequently have been disfavored by evolutionary selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alzheimer, A. (1907) Alg. Z. Psychiatry 64, 146–148.

    Google Scholar 

  2. Lansbury Jr., P.T. (1996) A reductionist’s view of Alzheimer’s disease. Acc. Chem. Res. 29, 317–321.

    Article  CAS  Google Scholar 

  3. Kelly, J.W. (1996) Alternative conformations of amyloidogenic proteins govern their behavior. Curr. Opin. Struct. Biol. 6, 11–17.

    Article  CAS  PubMed  Google Scholar 

  4. Kisilevsky, R. & Fraser, P.E. (1997) Ab Amyloidogenesis: Unique or variation on a systemic theme. Crit. Revs. Bwchem. & Molec. Biol. 32, 361–404.

    CAS  Google Scholar 

  5. Pruisner, S.B. (1997) Prion diseases and the BSE Crises. Science 278, 245–250.

    Google Scholar 

  6. Wetzel, R. (1997 Domain stability in immunoglobulin light chain deposition disorders. Advances in Protein Chemistry 50, 183–242.

    CAS  PubMed  Google Scholar 

  7. Sunde, M. & Blake, C. (1997) The Structure of amyloid fibrils by electron microscopy and X-ray diffraction. Advances in Protein Chemistry 50, 123–159.

    Article  CAS  PubMed  Google Scholar 

  8. Kelly, J.W., Colon, W., Lai, Z., Lashuel, H.A., McCulloch, J., McCutchen, S.L., Miroy, G.J., Peterson, S.A. (1997) Transthyretin quaternary and tertiary structural changes facilitate misassembly into amyloid. Advances in Protein Chemistry 50, 161–181.

    Article  CAS  PubMed  Google Scholar 

  9. Harper, J.D., Wong, S.S., Lieber, C.M., & Lansbury Jr., P.T. (1997) Observation of metastable Ab amyloid protofibrils by atomic force microscopy Chemistry & Biology 4, 119–125.

    CAS  Google Scholar 

  10. Lansbury Jr., P.T., Costa, P.R., Griffiths, J.M., Simon, E.J., Auger, M., Halverson, K.J., Kocisko, D.A., Hendsch, Z.S., Ashburn, T.T., Spencer, R.G.S., Tidor, B. & Griffin, R.G. (1995) Structural model for the β-amyloid fibril based on interstrand alignment of an antiparallel-sheet comprising a C-terminal peptide. Nature Structural Biology. 2, 990–997.

    Article  CAS  PubMed  Google Scholar 

  11. Xiong, H., Buckwalter, B.L., Shieh, H.M. & Hecht, M.H. (1995) Periodicity of polar and nonpolar amino acids is the major determinant of secondary structure in self-assembling oligomeric peptides. Proc. Natl. Acad. Sci.USA 92, 6349–6353.

    CAS  PubMed  Google Scholar 

  12. Xiong, H. (1995). The importance of hydrophobic/hydrophilic patterns in the amino acid sequence of peptides and proteins. Ph.D. Dissertation. Department of Chemistry, Princeton University.

    Google Scholar 

  13. West, M.W. & Hecht, M.H. Binary patterning of polar and nonpolar amino acids in the sequences and structures of native proteins. Protein Science 4, 2032–2039.

    Google Scholar 

  14. West MW, Wang W, Patterson J, Mancias JD, Beasley JR & Hecht MH (1999) De novo proteins from designed combinatorial libraries. Proc.Natl Acad. Sci.(USA) 96, 11211–11216.

    CAS  Google Scholar 

  15. Creighton, T.E. (1993) Proteins: Structures and molecular properties (2nd edition). WH Freeman & Company, New York.

    Google Scholar 

  16. Benzinger, T. M., Gregory, D. M., Burkoth, T. S., Miller-Auer, H., Lynn, D. G., Botto, R. E. & Meredith, S. C. (1998) Propagating structure of Alzheimer’s β-Amyloid (10–35) is parallel βsheet with residues in exact register Proc. Natl. Acad. Sci. USA 95, 13407–13412.

    Article  CAS  PubMed  Google Scholar 

  17. Richardson, J.S. (1981). Anatomy and taxonomy of protein structure. Advancesin Protein Chemistry 34, 167–339.

    CAS  Google Scholar 

  18. Zhu, H. Y. & Braun, W. (1999) Sequence specificity, statistical potentials, and three-dimensional structure prediction with self-correcting distance geometry calculations of β-sheet formation in proteins. Protein Science 8, 326–342.

    CAS  PubMed  Google Scholar 

  19. Hecht, M.H., Richardson, J.S., Richardson, D.C. & Ogden, R.C. (1990) De novo design, expression, and characterization of felix: A four-helix bundle protein of native-like sequence. Science 249, 884–891.

    CAS  PubMed  Google Scholar 

  20. Hutchinson, E.G. & Thornton, J.M. (1994) A revised set of potentials for β-turn formation in proteins. Protein Science 3, 2207–2216.

    CAS  PubMed  Google Scholar 

  21. Greenfield, N. & Fasman, G.D. (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8, 4108–4116.

    Article  CAS  PubMed  Google Scholar 

  22. Greenfield, N.J. http://www2.umdnj.edu/cdrwjweb/index.htm#software. The program we used is called G&F, which uses poly-lysine as model structures.

  23. Klunk, W.E., Pettegrew, J.W., & Abraham, DJ. (1989) Quantitative evaluation of Congo red binding to amyloid-like proteins with beta pleated sheet conformation J. Histochem. & Cytochem. 37, 1273–1281.

    CAS  Google Scholar 

  24. Bleasby, A.J., Akrigg, D., Attwood, T.K. (1994) OWL — A non-redundant, composite protein sequence database. Nucleic Acids Research 22, 3574–3577.

    CAS  PubMed  Google Scholar 

  25. Broome BM & Hecht MH (2000) Nature Disfavors Sequences of Alternating Polar and Nonpolar Amino Acids:Implications for Amyloidogenesis. J. Molec. Biol. 296, 961–968.

    Article  CAS  PubMed  Google Scholar 

  26. Kamtekar, S., Schiffer, J.M., Xiong, H., Babik, J.M. & Hecht, M.H. (1993) Protein design by binary patterning of polar and nonpolar amino acids. Science 262, 1680–1685.

    CAS  PubMed  Google Scholar 

  27. Roy, S., Ratnaswamy, G., Boice, J.A., Fairman, R., McLendon, G. & Hecht, M.H. (1997) A protein designed by binary patterning of polar and nonpolar amino acids displays native-like propeties. J. Am. Chem. Soc. 119, 5302–5306.

    Article  CAS  Google Scholar 

  28. Roy, S. & Hecht M.H. (2000) Cooperative thermal denaturation of proteins designed by binary patterning of polar and nonpolar amino acids. Biochemistry (in press)

    Google Scholar 

  29. Brack, A. & Orgel, L.E. (195) β structures of alternating polypeptides and their possible prebiotic significance. Nature 256, 383–387.

    Google Scholar 

  30. Janek, K, Behlke, J., Zipper, J., Fabian H., Georgalis, Y., Beyermann, M., Bienert, M., & Krause, E. (1999) Water soluble β-sheet models which self-assemble into fibrillar structures. Biochemistry 38, 8246–8252.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, S., Holmes, T. Lockshin, C. & Rich, A. (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc. Natl. Acad. Sci. USA 90, 3334–3338.

    CAS  PubMed  Google Scholar 

  32. Lim, A., Saderholm, M.J., Makhov, A.M., Kroll, M., Yan, Y., Perera, L., Griffith, J.D., & Erickson, B.W. (1998) Engineering of betabellin-15D: A 64 residue beta sheet protein that forms long narrow multimeric fibrils. Protein Science 7, 1545–1554.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hecht, M. et al. (2002). Designed Combinatorial Libraries of Novel Amyloid-Like Proteins. In: Self-Assembling Peptide Systems in Biology, Medicine and Engineering. Springer, Dordrecht. https://doi.org/10.1007/0-306-46890-5_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-46890-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7090-1

  • Online ISBN: 978-0-306-46890-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics