Skip to main content
Log in

Estimation of Maximal Oxygen Uptake via Submaximal Exercise Testing in Sports, Clinical, and Home Settings

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Assessment of the functional capacity of the cardiovascular system is essential in sports medicine. For athletes, the maximal oxygen uptake \( ( \dot{V}{{{\text{O}}_{2\hbox{max} } }} ) \) provides valuable information about their aerobic power. In the clinical setting, the \(\dot{V}{{{\text{O}}_{2\hbox{max} } }}\) provides important diagnostic and prognostic information in several clinical populations, such as patients with coronary artery disease or heart failure. Likewise, \(\dot{V}{{{\text{O}}_{2\hbox{max} } }}\) assessment can be very important to evaluate fitness in asymptomatic adults. Although direct determination of \(\dot{V}{{{\text{O}}_{2\hbox{max} } }}\) is the most accurate method, it requires a maximal level of exertion, which brings a higher risk of adverse events in individuals with an intermediate to high risk of cardiovascular problems. Estimation of \(\dot{V}{{{\text{O}}_{2\hbox{max} } }}\) during submaximal exercise testing can offer a precious alternative. Over the past decades, many protocols have been developed for this purpose. The present review gives an overview of these submaximal protocols and aims to facilitate appropriate test selection in sports, clinical, and home settings. Several factors must be considered when selecting a protocol: (i) The population being tested and its specific needs in terms of safety, supervision, and accuracy and repeatability of the \(\dot{V}{{{\text{O}}_{2\hbox{max} } }}\) estimation. (ii) The parameters upon which the prediction is based (e.g. heart rate, power output, rating of perceived exertion [RPE]), as well as the need for additional clinically relevant parameters (e.g. blood pressure, ECG). (iii) The appropriate test modality that should meet the above-mentioned requirements should also be in line with the functional mobility of the target population, and depends on the available equipment. In the sports setting, high repeatability is crucial to track training-induced seasonal changes. In the clinical setting, special attention must be paid to the test modality, because multiple physiological parameters often need to be measured during test execution. When estimating \(\dot{V}{{{\text{O}}_{2\hbox{max} } }}\), one has to be aware of the effects of medication on heart rate-based submaximal protocols. In the home setting, the submaximal protocols need to be accessible to users with a broad range of characteristics in terms of age, equipment, time available, and an absence of supervision. In this setting, the smart use of sensors such as accelerometers and heart rate monitors will result in protocol-free \(\dot{V}{{{\text{O}}_{2\hbox{max} } }}\) assessments. In conclusion, the need for a low-risk, low-cost, low-supervision, and objective evaluation of \(\dot{V}{{{\text{O}}_{2\hbox{max} } }}\) has brought about the development and the validation of a large number of submaximal exercise tests. It is of paramount importance to use these tests in the right context (sports, clinical, home), to consider the population in which they were developed, and to be aware of their limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arena R, Myers J, Williams MA, et al. Assessment of functional capacity in clinical and research settings: a scientific statement from the American Heart Association Committee on Exercise, Rehabilitation, and Prevention of the Council on Clinical Cardiology and the Council on Cardiovascular Nursing. Circulation. 2007;116(3):329–43.

    Article  PubMed  Google Scholar 

  2. Bruce RA, Kusumi F, Hosmer D. Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am Heart J. 1973;85(4):546–62.

    Article  CAS  PubMed  Google Scholar 

  3. ACSM. ACSM’s guidelines for exercise testing and prescription, 7th ed. Lippincott Williams & Wilkins: Philadelphia; 2005.

  4. Bassett DR Jr, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32(1):70–84.

    PubMed  Google Scholar 

  5. Rowell LB, O’Leary DS, Kellogg DL. Chapter 17: Integration of cardiovascular control systems in dynamic exercise. In: Rowell LB, Shepherd JT, editors. Comprehensive physiology: supplement 29: handbook of physiology, exercise: regulation and integration of multiple systems. Chichester: Wiley; 2011. p. 770–838.

    Google Scholar 

  6. DiCarlo SE. Improved cardiopulmonary status after a two-month program of graded arm exercise in a patient with C6 quadriplegia: a case report. Phys Ther. 1982;62(4):456–9.

    CAS  PubMed  Google Scholar 

  7. Issekutz B Jr, Rodahl K. Respiratory quotient during exercise. J Appl Physiol. 1961;16:606–10.

    CAS  PubMed  Google Scholar 

  8. Davis JA. Direct determination of aerobic power. In: Maud PJ, Foster C, editors. Physiological assessment of human fitness. Champaign: Human Kinetics; 2006. p. 9–18.

    Google Scholar 

  9. Akalan C, Robergs RA, Kravitz L. Prediction of VO2max from an individualized submaximal cycle ergometer protocol. J Exerc Physiol Online. 2008;11(2):1–17.

    Google Scholar 

  10. Billat V, Lopes P. Indirect methods for estimation of aerobic power. In: Maud PJ, Foster C, editors. Physiological assessment of human fitness. Champaign: Human Kinetics; 2006. p. 19–38.

    Google Scholar 

  11. Zoladz JA, Duda K, Majerczak J. Oxygen uptake does not increase linearly at high power outputs during incremental exercise test in humans. Eur J Appl Physiol Occup Physiol. 1998;77(5):445–51.

    Article  CAS  PubMed  Google Scholar 

  12. Brooke JD, Hamley EJ, Thomason H. Relationship of heart rate to physical work. J Physiol. 1968;197(1):61P–3P.

    CAS  PubMed  Google Scholar 

  13. Davies CT. Limitations to the prediction of maximum oxygen intake from cardiac frequency measurements. J Appl Physiol. 1968;24(5):700–6.

    CAS  PubMed  Google Scholar 

  14. Cumming GR, Glenn J. Evaluation of the Canadian home fitness test in middle-aged men. Can Med Assoc J. 1977;117(4):346–9.

    CAS  PubMed  Google Scholar 

  15. Shephard RJ, Allen C, Benade AJ, et al. Standardization of submaximal exercise tests. Bull World Health Organ. 1968;38(5):765–75.

    CAS  PubMed  Google Scholar 

  16. Montoye HJ. Physical activity and health: an epidemiologic study of an entire community. Englewood Cliffs: Prentice-Hall, Inc; 1975.

  17. Pollock ML, Garzarella L, deHoyos DV, et al. The cross-validation of the United States air force submaximal cycle ergometer test to estimate aerobic capacity. St Cloud: Center for Exercise Science Dept. of Medicine, University of Florida Southeastern Center for Electrical Engineering Education Inc; 1994.

  18. Gibbons WJ, Fruchter N, Sloan S, et al. Reference values for a multiple repetition 6-minute walk test in healthy adults older than 20 years. J Cardiopulm Rehabil. 2011;21(2):87–93.

    Article  Google Scholar 

  19. Wu G, Sanderson B, Bittner V. The 6-minute walk test: how important is the learning effect? Am Heart J. 2003;146(1):129–33.

    Article  PubMed  Google Scholar 

  20. Shephard RJ. Tests of maximum oxygen intake: a critical review. Sports Med. 1984;1(2):99–124.

    Article  CAS  PubMed  Google Scholar 

  21. Rowell LB. Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev. 1974;54(1):75–159.

    CAS  PubMed  Google Scholar 

  22. Bosquet L, Gamelin FX, Berthoin S. Reliability of postexercise heart rate recovery. Int J Sports Med. 2008;29(3):238–43.

    Article  CAS  PubMed  Google Scholar 

  23. Wergel-Kolmert U, Agehall A, Rosenberg N, et al. Day-to-day variation in oxygen consumption at submaximal loads during ergometer cycling by adolescents. Clin Physiol. 2001;21(2):135–40.

    Article  CAS  PubMed  Google Scholar 

  24. Grant S, Corbett K, Amjad AM, et al. A comparison of methods of predicting maximum oxygen uptake. Br J Sports Med. 1995;29(3):147–52.

    Article  CAS  PubMed  Google Scholar 

  25. Weller IM, Thomas SG, Corey PN, et al. Prediction of maximal oxygen uptake from a modified Canadian aerobic fitness test. Can J Appl Physiol. 1993;18(2):175–88.

    Article  CAS  PubMed  Google Scholar 

  26. Beekley MD, Brechue WF, deHoyos DV, et al. Cross-validation of the YMCA submaximal cycle ergometer test to predict VO2max. Res Q Exerc Sport. 2004;75(3):337–42.

    Article  PubMed  Google Scholar 

  27. Nevill AM, Ramsbottom R, Williams C. Scaling physiological measurements for individuals of different body size. Eur J Appl Physiol Occup Physiol. 1992;65(2):110–7.

    Article  CAS  PubMed  Google Scholar 

  28. Guthrie J. Chapter 19: cardiorespiratory and health-related physical fitness assessments. In: Ehrman JK, deJong A, editors. ACSM’s resource manual for guidelines for exercise testing and prescription. Baltimore: Lippincott Williams & Wilkins; 2010. p. 297–331.

  29. Durstine JL, Moore GE, Painter PL, et al. ACSM’s exercise management for persons with chronic diseases and disabilities. 3rd ed. Champaign: Human Kinetics; 2009.

    Google Scholar 

  30. Margaria R. Biomechanics and energetics of muscular exercise. Oxford: Clarendon Press; 1976.

    Google Scholar 

  31. Saltin B, Astrand PO. Maximal oxygen uptake in athletes. J Appl Physiol. 1967;23(3):353–8.

    CAS  PubMed  Google Scholar 

  32. Astrand PO, Ryhming I. A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during sub-maximal work. J Appl Physiol. 1954;7(2):218–21.

    CAS  PubMed  Google Scholar 

  33. Margaria R, Aghemo P, Rovelli E. Indirect determination of maximal O2 consumption in man. J Appl Physiol. 1965;20(5):1070–3.

    CAS  PubMed  Google Scholar 

  34. McArdle WD, Katch FI, Pechar GS, et al. Reliability and interrelationships between maximal oxygen intake, physical work capacity and step-test scores in college women. Med Sci Sports. 1972;4(4):182–6.

    CAS  PubMed  Google Scholar 

  35. Piquet L, Dalmay F, Ayoub J, et al. Study of blood flow parameters measured in femoral artery after exercise: correlation with maximum oxygen uptake. Ultrasound Med Biol. 2000;26(6):1001–7.

    Article  CAS  PubMed  Google Scholar 

  36. Artinian NT, Fletcher GF, Mozaffarian D, et al. Interventions to promote physical activity and dietary lifestyle changes for cardiovascular risk factor reduction in adults: a scientific statement from the American Heart Association. Circulation. 2010;122(4):406–41.

    Article  PubMed  Google Scholar 

  37. Greenland P, Alpert JS, Beller GA, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2010;56(25):e50–103.

    Article  PubMed  Google Scholar 

  38. Grundy SM, Pasternak R, Greenland P, et al. AHA/ACC scientific statement: assessment of cardiovascular risk by use of multiple-risk-factor assessment equations: a statement for healthcare professionals from the American Heart Association and the American College of Cardiology. J Am Coll Cardiol. 1999;34(4):1348–59.

    Article  CAS  PubMed  Google Scholar 

  39. Kodama S, Saito K, Tanaka S, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):2024–35.

    Article  CAS  PubMed  Google Scholar 

  40. Noonan V, Dean E. Submaximal exercise testing: clinical application and interpretation. Phys Ther. 2000;80(8):782–807.

    CAS  PubMed  Google Scholar 

  41. Al-Rahamneh HQ, Eston RG. The validity of predicting peak oxygen uptake from a perceptually guided graded exercise test during arm exercise in paraplegic individuals. Spinal Cord. 2011;49(3):430–4.

    Article  CAS  PubMed  Google Scholar 

  42. Lennon OC, Denis RS, Grace N, et al. Feasibility, criterion validity and retest reliability of exercise testing using the Astrand-rhyming test protocol with an adaptive ergometer in stroke patients. Disabil Rehabil. 2012;34(14):1149–56.

    Article  PubMed  Google Scholar 

  43. Eng JJ, Dawson AS, Chu KS. Submaximal exercise in persons with stroke: test-retest reliability and concurrent validity with maximal oxygen consumption. Arch Phys Med Rehabil. 2004;85(1):113–8.

    Article  PubMed  Google Scholar 

  44. Cahalin LP, Mathier MA, Semigran MJ, et al. The six-minute walk test predicts peak oxygen uptake and survival in patients with advanced heart failure. Chest. 1996;110(2):325–32.

    Article  CAS  PubMed  Google Scholar 

  45. Singh SJ, Morgan MD, Hardman AE, et al. Comparison of oxygen uptake during a conventional treadmill test and the shuttle walking test in chronic airflow limitation. Eur Respir J. 1994;7(11):2016–20.

    CAS  PubMed  Google Scholar 

  46. Laskin JJ, Bundy S, Marron H, et al. Using a treadmill for the 6-minute walk test: reliability and validity. J Cardiopulm Rehabil Prev. 2007;27(6):407–10.

    PubMed  Google Scholar 

  47. Nakagaichi M, Tanaka K. Development of a 12-min treadmill walk test at a self-selected pace for the evaluation of cardiorespiratory fitness in adult men. Appl Human Sci. 1998;17(6):281–8.

    Article  CAS  PubMed  Google Scholar 

  48. Marcora SM, Casanova F, Fortes MB, et al. Validity and reliability of the Siconolfi Step Test for assessment of physical fitness in patients with systemic lupus erythematosus. Arthritis Rheum. 2007;57(6):1007–11.

    Article  PubMed  Google Scholar 

  49. Petrella RJ, Koval JJ, Cunningham DA, et al. A self-paced step test to predict aerobic fitness in older adults in the primary care clinic. J Am Geriatr Soc. 2001;49(5):632–8.

    Article  CAS  PubMed  Google Scholar 

  50. Birkett WA, Edwards DF. The use of one-arm crank ergometry in the prediction of upper body aerobic capacity. Clin Rehabil. 1998;12(4):319–27.

    Article  CAS  PubMed  Google Scholar 

  51. Pare G, Noreau L, Simard C. Prediction of maximal aerobic power from a submaximal exercise test performed by paraplegics on a wheelchair ergometer. Paraplegia. 1993;31(9):584–92.

    Article  CAS  PubMed  Google Scholar 

  52. Jette M, Campbell J, Mongeon J, et al. The Canadian home fitness test as a predictor for aerobic capacity. Can Med Assoc J. 1976;114(8):680–2.

    CAS  PubMed  Google Scholar 

  53. Kline GM, Porcari JP, Hintermeister R, et al. Estimation of VO2max from a one-mile track walk, gender, age, and body weight. Med Sci Sports Exerc. 1987;19(3):253–9.

    CAS  PubMed  Google Scholar 

  54. Oja P, Laukkanen R, Pasanen M, et al. A 2-km walking test for assessing the cardiorespiratory fitness of healthy adults. Int J Sports Med. 1991;12(4):356–62.

    Article  CAS  PubMed  Google Scholar 

  55. Ribisl PM, Kachadorian WA. Maximal oxygen intake prediction in young and middle-aged males. J Sports Med Phys Fitness. 1969;9(1):17–22.

    CAS  PubMed  Google Scholar 

  56. Mello R, Murphy M, Vogel J. Relationship between the army two mile run test and maximal oxygen uptake: US Army Medical Research and Development Command, 1984.

  57. George JD, Vehrs PR, Allsen PE, et al. VO2max estimation from a submaximal 1-mile track jog for fit college-age individuals. Med Sci Sports Exerc. 1993;25(3):401–6.

    CAS  PubMed  Google Scholar 

  58. Ebbeling CB, Ward A, Puleo EM, et al. Development of a single-stage submaximal treadmill walking test. Med Sci Sports Exerc. 1991;23(8):966–73.

    CAS  PubMed  Google Scholar 

  59. Mitros M, Gabriel KP, Ainsworth B, et al. Comprehensive evaluation of a single-stage submaximal treadmill walking protocol in healthy, middle-aged women. Eur J Appl Physiol. 2011;111(1):47–56.

    Article  CAS  PubMed  Google Scholar 

  60. Metz KF, Alexander JF. An investigation of the relationship between maximum aerobic work capacity and physical fitness in twelve- to fifteen-year-old boys. Res Q. 1970;41(1):75–81.

    Google Scholar 

  61. Weyand PG, Kelly M, Blackadar T, et al. Ambulatory estimates of maximal aerobic power from foot-ground contact times and heart rates in running humans. J Appl Physiol. 2001;91(1):451–8.

    CAS  PubMed  Google Scholar 

  62. Plasqui G, Westerterp KR. Accelerometry and heart rate as a measure of physical fitness: proof of concept. Med Sci Sports Exerc. 2005;37(5):872–6.

    Article  PubMed  Google Scholar 

  63. Greiwe JS, Kaminsky LA, Whaley MH, et al. Evaluation of the ACSM submaximal ergometer test for estimating VO2max. Med Sci Sports Exerc. 1995;27(9):1315–20.

    CAS  PubMed  Google Scholar 

  64. Darby LA, Pohlman RL. Prediction of maxVO2 for women: adaptation of the Fox cycle ergometer protocol. J Exerc Physiol Online. 1999;2(4):13–9.

    CAS  Google Scholar 

  65. DeVries HA, Klafs CE. Prediction of maximal oxygen intake from submaximal tests. J Sports Med Phys Fitness. 1965;5(4):207–14.

    CAS  PubMed  Google Scholar 

  66. Siconolfi SF, Cullinane EM, Carleton RA, et al. Assessing VO2max in epidemiologic studies: modification of the Astrand-Rhyming test. Med Sci Sports Exerc. 1982;14(5):335–8.

    CAS  PubMed  Google Scholar 

  67. Knuttgen HG. Aerobic capacity of adolescents. J Appl Physiol. 1967;22(4):655–8.

    CAS  PubMed  Google Scholar 

  68. Woynarowska B. The validity of indirect estimations of maximal oxygen uptake in children 11–12 years of age. Eur J Appl Physiol Occup Physiol. 1980;43(1):19–23.

    Article  CAS  PubMed  Google Scholar 

  69. Fox EL. A simple, accurate technique for predicting maximal aerobic power. J Appl Physiol. 1973;35(6):914–6.

    CAS  PubMed  Google Scholar 

  70. Eston RG, Faulkner JA, Mason EA, et al. The validity of predicting maximal oxygen uptake from perceptually regulated graded exercise tests of different durations. Eur J Appl Physiol. 2006;97(5):535–41.

    Article  CAS  PubMed  Google Scholar 

  71. Eston RG, Lamb KL, Parfitt G, et al. The validity of predicting maximal oxygen uptake from a perceptually-regulated graded exercise test. Eur J Appl Physiol. 2005;94(3):221–7.

    Article  PubMed  Google Scholar 

  72. Okura T, Tanaka K. A unique method for predicting cardiorespiratory fitness using rating of perceived exertion. J Physiol Anthropol Appl Human Sci. 2001;20(5):255–61.

    Article  CAS  PubMed  Google Scholar 

  73. Lambrick DM, Faulkner JA, Rowlands AV, et al. Prediction of maximal oxygen uptake from submaximal ratings of perceived exertion and heart rate during a continuous exercise test: the efficacy of RPE 13. Eur J Appl Physiol. 2009;107(1):1–9.

    Article  PubMed  Google Scholar 

  74. Magrani P, Pompeu FA. Equations for predicting aerobic power (VO(2)) of young Brazilian adults. Arq Bras Cardiol. 2010;94(6):763–70.

    Article  PubMed  Google Scholar 

  75. Swain DP, Wright RL. Prediction of VO2peak from submaximal cycle ergometry using 50 versus 80 rpm. Med Sci Sports Exerc. 1997;29(2):268–72.

    Article  CAS  PubMed  Google Scholar 

  76. Buono MJ, Borin TL, Sjoholm NT, et al. Validity and reliability of a timed 5 km cycle ergometer ride to predict maximum oxygen uptake. Physiol Meas. 1996;17(4):313–7.

    Article  CAS  PubMed  Google Scholar 

  77. Glenn FA. The test–retest reliability of the United States Air Forces submaximal bicycle ergometry aerobic fitness test. Oklahoma: The University of Oklahoma; 1998.

  78. Swain DP, Parrott JA, Bennett AR, et al. Validation of a new method for estimating VO2max based on Vo2 reserve. Med Sci Sports Exerc. 2004;36(8):1421–6.

    Article  PubMed  Google Scholar 

  79. Mastropaolo JA. Prediction of maximal O2 consumption in middle-aged men by multiple regression. Med Sci Sports. 1970;2(3):124–7.

    CAS  PubMed  Google Scholar 

  80. Sady SP, Carpenter MW, Sady MA, et al. Prediction of VO2max during cycle exercise in pregnant women. J Appl Physiol. 1988;65(2):657–61.

    CAS  PubMed  Google Scholar 

  81. Pober DM, Freedson PS, Kline GM, et al. Development and validation of a one-mile treadmill walk test to predict peak oxygen uptake in healthy adults ages 40 to 79 years. Can J Appl Physiol. 2002;27(6):575–89.

    Article  PubMed  Google Scholar 

  82. Heil DP, Freedson PS, Ahlquist LE, et al. Nonexercise regression models to estimate peak oxygen consumption. Med Sci Sports Exerc. 1995;27(4):599–606.

    CAS  PubMed  Google Scholar 

  83. Nemeth BA, Carrel AL, Eickhoff J, et al. Submaximal treadmill test predicts VO2max in overweight children. J Pediatr. 2009;154(5):677–81.

    Article  PubMed  Google Scholar 

  84. Swank AM, Serapiglia L, Funk D, et al. Development of a branching submaximal treadmill test for predicting VO2max. J Strength Cond Res. 2001;15(3):302–8.

    CAS  PubMed  Google Scholar 

  85. Bonen A, Heyward VH, Cureton KJ, et al. Prediction of maximal oxygen uptake in boys, ages 7–15 years. Med Sci Sports. 1979;11(1):24–9.

    CAS  PubMed  Google Scholar 

  86. Hermiston RT, Faulkner JA. Prediction of maximal oxygen uptake by a stepwise regression technique. J Appl Physiol. 1971;30(6):833–7.

    CAS  PubMed  Google Scholar 

  87. Nakagaichi M, Lee MS, Tanaka K. Accuracy of two simple methods for the assessment of health-related physical fitness. Percept Mot Skills. 2001;92(1):37–49.

    Article  CAS  PubMed  Google Scholar 

  88. Latin RW, Elias BA. Predictions of maximum oxygen uptake from treadmill walking and running. J Sports Med Phys Fitness. 1993;33(1):34–9.

    CAS  PubMed  Google Scholar 

  89. Marsh CE. Evaluation of the American College of Sports Medicine submaximal treadmill running test for predicting VO2max. J Strength Cond Res. 2012;26(2):548–54.

    Article  PubMed  Google Scholar 

  90. Mier CM, Gibson AL. Evaluation of a treadmill test for predicting the aerobic capacity of firefighters. Occup Med. 2004;54(6):373–8.

    Article  Google Scholar 

  91. Tierney MT, Lenar D, Stanforth PR, et al. Prediction of aerobic capacity in firefighters using submaximal treadmill and stairmill protocols. J Strength Cond Res. 2010;24(3):757–64.

    Article  PubMed  Google Scholar 

  92. Dolgener FA, Hensley LD, Marsh JJ, et al. Validation of the Rockport Fitness Walking Test in college males and females. Res Q Exerc Sport. 1994;65(2):152–8.

    Article  CAS  PubMed  Google Scholar 

  93. George JD, Fellingham GW, Fisher AG. A modified version of the Rockport Fitness Walking Test for college men and women. Res Q Exerc Sport. 1998;69(2):205–9.

    Article  CAS  PubMed  Google Scholar 

  94. Kervio G, Carre F, Ville NS. Reliability and intensity of the six-minute walk test in healthy elderly subjects. Med Sci Sports Exerc. 2003;35(1):169–74.

    Article  PubMed  Google Scholar 

  95. Cooper KH. A means of assessing maximal oxygen intake: correlation between field and treadmill testing. JAMA. 1968;203(3):201–4.

    Article  CAS  PubMed  Google Scholar 

  96. Davies RC, Rowlands AV, Eston RG. The prediction of maximal oxygen uptake from submaximal ratings of perceived exertion elicited during the multistage fitness test. Br J Sports Med. 2008;42(12):1006–10.

    Article  CAS  PubMed  Google Scholar 

  97. Getchell LH, Kirkendall D, Robbins G. Prediction of maximal oxygen uptake in young adult women joggers. Res Q. 1977;48(1):61–7.

    CAS  PubMed  Google Scholar 

  98. Larsen GE, George JD, Alexander JL, et al. Prediction of maximum oxygen consumption from walking, jogging, or running. Res Q Exerc Sport. 2002;73(1):66–72.

    Article  PubMed  Google Scholar 

  99. Ramsbottom R, Nute MG, Williams C. Determinants of five kilometer running performance in active men and women. Br J Sports Med. 1987;21(2):9–13.

    Article  CAS  PubMed  Google Scholar 

  100. Weller IM, Thomas SG, Gledhill N, et al. A study to validate the modified Canadian Aerobic Fitness Test. Can J Appl Physiol. 1995;20(2):211–21.

    Article  CAS  PubMed  Google Scholar 

  101. Sykes K, Roberts A. The Chester step test—a simple yet effective tool for the prediction of aerobic capacity. Physiotherapy. 2004;90:183–8.

    Article  Google Scholar 

  102. Buckley JP, Sim J, Eston RG, et al. Reliability and validity of measures taken during the Chester step test to predict aerobic power and to prescribe aerobic exercise. Br J Sports Med. 2004;38(2):197–205.

    Article  CAS  PubMed  Google Scholar 

  103. Harrison MH, Bruce DL, Brown GA, et al. A comparison of some indirect methods for predicting maximal oxygen uptake. Aviat Space Environ Med. 1980;51(10):1128–33.

    CAS  PubMed  Google Scholar 

  104. Santo AS, Golding LA. Predicting maximum oxygen uptake from a modified 3-minute step test. Res Q Exerc Sport. 2003;74(1):110–5.

    Article  PubMed  Google Scholar 

  105. McArdle WD, Katch FI, Katch VL. Essentials of exercise physiology. Amherst: Lea & Febiger; 1994.

    Google Scholar 

  106. Siconolfi SF, Garber CE, Lasater TM, et al. A simple, valid step test for estimating maximal oxygen uptake in epidemiologic studies. Am J Epidemiol. 1985;121(3):382–90.

    CAS  PubMed  Google Scholar 

  107. Francis K, Culpepper M. Height-adjusted, rate-specific, single-stage step test for predicting maximal oxygen consumption. South Med J. 1989;82(5):602–6.

    Article  CAS  PubMed  Google Scholar 

  108. Francis K, Feinstein R. A simple height-specific and rate-specific step test for children. South Med J. 1991;84(2):169–74.

    Article  CAS  PubMed  Google Scholar 

  109. Teh KC, Aziz AR. A stair-climb test of cardiorespiratory fitness for Singapore. Singapore Med J. 2000;41(12):588–94.

    CAS  PubMed  Google Scholar 

  110. Tan HYF, Aziz AR, Chia YHM, et al. Prediction of change in cardiorespiratory fitness by the stair-climb test after ten weeks of aerobic training. Adv Exerc Sports Physiol. 2005;11(2):61–7.

    Google Scholar 

  111. Roy JL, Smith JF, Bishop PA, et al. Prediction of maximal Vo2 from a submaximal StairMaster test in young women. J Strength Cond Res. 2004;18(1):92–6.

    PubMed  Google Scholar 

  112. Tuxworth W, Shahnawaz H. The design and evaluation of a step test for the rapid prediction of physical work capacity in an unsophisticated industrial work force. Ergonomics. 1977;20(2):181–91.

    Article  CAS  PubMed  Google Scholar 

  113. Falls HB, Ismail AH, MacLeod DF. Estimation of maximum oxygen uptake in adults from AAHPER youth fitness test items. Res Q. 1966;37(2):192–201.

    CAS  PubMed  Google Scholar 

  114. Bulthuis Y, Drossaers-Bakker W, Oosterveld F, et al. Arm crank ergometer is reliable and valid for measuring aerobic capacity during submaximal exercise. J Strength Cond Res. 2010;24(10):2809–15.

    Article  PubMed  Google Scholar 

  115. Olson MS, Williford HN, Blessing DL, et al. A test to estimate VO2max in females using aerobic dance, heart rate, BMI, and age. J Sports Med Phys Fitness. 1995;35(3):159–68.

    CAS  PubMed  Google Scholar 

  116. Loudon JK, Cagle PE, Figoni SF, et al. A submaximal all-extremity exercise test to predict maximal oxygen consumption. Med Sci Sports Exerc. 1998;30(8):1299–303.

    Article  CAS  PubMed  Google Scholar 

  117. Jessup GT, Tolson H, Terry JW. Prediction of maximal oxygen intake from Astrand-Rhyming test, 12-minute run, and anthropometric variables using stepwise multiple regression. Am J Phys Med. 1974;53(4):200–7.

    CAS  PubMed  Google Scholar 

  118. Dalleck LC, Kravitz L, Robergs RA. Development of a submaximal test to predict elliptical cross-trainer VO2max. J Strength Cond Res. 2006;20(2):278–83.

    PubMed  Google Scholar 

  119. Burke EJ. Validity of selected laboratory and field tests of physical working capacity. Res Q. 1976;47(1):95–104.

    CAS  PubMed  Google Scholar 

  120. Plasqui G, Westerterp KR. Accelerometry and heart rate as a measure of physical fitness: cross-validation. Med Sci Sports Exerc. 2006;38(8):1510–4.

    Article  PubMed  Google Scholar 

  121. Shephard RJ, Weese CH, Merriman JE. Prediction of maximal oxygen intake from anthropometric data: some observations on pre-adolescent schoolchildren. Int Z Angew Physiol. 1971;29(2):119–30.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors have not received any funding for this study. FS and AGB work for Philips Research. All other authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Sartor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 601 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sartor, F., Vernillo, G., de Morree, H.M. et al. Estimation of Maximal Oxygen Uptake via Submaximal Exercise Testing in Sports, Clinical, and Home Settings. Sports Med 43, 865–873 (2013). https://doi.org/10.1007/s40279-013-0068-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-013-0068-3

Keywords

Navigation