Skip to main content

Advertisement

Log in

Embryonic Stem Cells for Severe Heart Failure: Why and How?

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The experience accumulated in cardiac cell therapy suggests that regeneration of extensively necrotic myocardial areas is unlikely to be achieved by the sole paracrine effects of the grafted cells but rather requires the conversion of these cells into cardiomyocytes featuring the capacity to substitute for those which have been irreversibly lost. In this setting, the use of human pluripotent embryonic stem cells has a strong rationale. The experimental results obtained in animal models of myocardial infarction are encouraging. However, the switch to clinical applications still requires to address some critical issues, among which the optimization of the cardiac specification of the embryonic stem cells, the purification of the resulting progenitor cells so as to graft a purified population devoid from any contamination by residual pluripotent cells which carry the risk of tumorigenesis, and the control of the expected allogeneic rejection by clinically acceptable methods. If the solution to these problems is a prerequisite, the therapeutic success of this approach will also depend on the capacity to efficiently transfer the cells to the target tissue, to keep them alive once engrafted, and to allow them to spatially organize in such a way that they can contribute to the contractile function of the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roger, V., Go, A. S., Lloyd-Jones, D. M., Adams, R. J., Berry, J. D., Brown, T. M., et al. (2011). Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation, 123, e18–e209.

    Article  PubMed  Google Scholar 

  2. Dickstein, K., Cohen-Solal, A., Filippatos, G., McMurray, J. J., Ponikowski, P., Poole-Wilson, P. A., et al. (2008). ESC guidelines for the diagnosis of acute and chronic heart failure 2008. European Heart Journal, 29, 2388–2442.

    Article  PubMed  CAS  Google Scholar 

  3. Jones, R. H., Velazquez, E. J., Michler, R. E., Sopko, G., Oh, J. K., O’Connor, C. M., et al. (2009). Coronary bypass surgery with or without surgical ventricular reconstruction. The New England Journal of Medicine, 360, 1705–1717.

    Article  PubMed  CAS  Google Scholar 

  4. Slaughter, M. S., Meyer, A. L., & Birks, E. J. (2011). Destination therapy with left ventricular assist devices: patient selection and outcomes. Current Opinion in Cardiology, 26, 232–236.

    Article  PubMed  Google Scholar 

  5. Albouaini, K., Egred, M., Rao, A., Alahmar, A., & Wright, D. J. (2008). Cardiac resynchronisation therapy: evidence based benefits and patient selection. European Journal of Internal Medicine, 19, 165–172.

    Article  PubMed  CAS  Google Scholar 

  6. Menasché, P. (2009). Cell-based therapy for heart disease: a clinically oriented perspective. Molecular Therapy, 17, 758–766.

    Article  PubMed  Google Scholar 

  7. Cho, H. J., Lee, N., Lee, J. Y., Choi, Y. J., Ii, M., Wecker, A., et al. (2007). Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart. The Journal of Experimental Medicine, 204, 3257–3269.

    Article  PubMed  CAS  Google Scholar 

  8. Mirotsou, M., Jayawardena, T. M., Schmeckpeper, J., Gnecchi, M., & Dzau, V. J. (2011). Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. Journal of Molecular and Cellular Cardiology, 50, 280–289.

    Article  PubMed  CAS  Google Scholar 

  9. Bollini, S., Smart, N., & Riley, P. R. (2011). Resident cardiac progenitor cells: at the heart of regeneration. Journal of Molecular and Cellular Cardiology, 50, 296–303.

    Article  PubMed  CAS  Google Scholar 

  10. Pouly, J., Bruneval, P., Mandet, C., Proksch, S., Peyrard, S., Amrein, C., et al. (2008). Cardiac stem cells in the real world. The Journal of Thoracic and Cardiovascular Surgery, 135, 673–678.

    Article  PubMed  Google Scholar 

  11. Amir, G., Ma, X., Reddy, V. M., Hanley, F. L., Reinhartz, O., Ramamoorthy, C., et al. (2008). Dynamics of human myocardial progenitor cell populations in the neonatal period. The Annals of Thoracic Surgery, 86, 1311–1319.

    Article  PubMed  Google Scholar 

  12. Mishra, R., Vijayan, K., Colletti, E. J., Harrington, D. A., Matthiesen, T. S., Simpson, D., et al. (2011). Characterization and functionality of cardiac progenitor cells in congenital heart patients. Circulation, 123, 364–373.

    Article  PubMed  CAS  Google Scholar 

  13. Bolli, R., Chugh, A. R., D’Amario, D., Loughran, J. H., Stoddard, M. F., Ikram, S., et al. (2011). Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet, 378, 1847–1857.

    Article  PubMed  Google Scholar 

  14. Gai, H., Leung, E. L., Costantino, P. D., Aguila, J. R., Nguyen, D. M., Fink, L. M., et al. (2009). Generation and characterization of functional cardiomyocytes using induced pluripotent stem cells derived from human fibroblasts. Cell Biology International, 33, 1184–1193.

    Article  PubMed  CAS  Google Scholar 

  15. Pera, M. F. (2011). The dark side of induced pluripotency. Nature, 471, 46–47.

    Article  PubMed  CAS  Google Scholar 

  16. Zhao, T., Zhang, Z. N., Rong, Z., & Xu, Y. (2011). Immunogenicity of induced pluripotent stem cells. Nature, 474, 212–215.

    Article  PubMed  CAS  Google Scholar 

  17. Ieda, M., Fu, J. D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B. G., et al. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 42, 375–386.

    Article  Google Scholar 

  18. Behfar, A., Yamada, S., Crespo-Diaz, R., Nesbitt, J. J., Rowe, L. A., Perez-Terzic, C., et al. (2010). Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. Journal of the American College of Cardiology, 56, 721–734.

    Article  PubMed  CAS  Google Scholar 

  19. Behfar, A., Zingman, L. V., Hodgson, D. M., Rauzier, J. M., Kane, G. C., Terzic, A., et al. (2002). Stem cell differentiation requires a paracrine pathway in the heart. The FASEB Journal, 16, 1558–1566.

    Article  Google Scholar 

  20. Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., et al. (2001). Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. The Journal of Clinical Investigation, 108, 407–414.

    PubMed  CAS  Google Scholar 

  21. Sartiani, L., Bettiol, E., Stillitano, F., Mugelli, A., Cerbai, E., & Jaconi, M. E. (2007). Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach. Stem Cells, 25, 1136–1144.

    Article  PubMed  CAS  Google Scholar 

  22. Brito-Martins, M., Harding, S. E., & Ali, N. N. (2008). Beta(1)- and beta(2)-adrenoceptor responses in cardiomyocytes derived from human embryonic stem cells: comparison with failing and non-failing adult human heart. British Journal of Pharmacology, 153, 751–759.

    Article  PubMed  CAS  Google Scholar 

  23. Mummery, C., Ward-van Oostwaard, D., Doevendans, P., Spijker, R., van den Brink, S., Hassink, R., et al. (2002). Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation, 107, 2733–2740.

    Article  Google Scholar 

  24. Kofidis, T., Lebl, D. R., Swijnenburg, R. J., Greeve, J. M., Klima, U., & Robbins, R. C. (2006). Allopurinol/uricase and ibuprofen enhance engraftment of cardiomyocyte-enriched human embryonic stem cells and improve cardiac function following myocardial injury. European Journal of Cardio-Thoracic Surgery, 29, 50–55.

    Article  PubMed  Google Scholar 

  25. Laflamme, M., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25, 1015–1024.

    Article  PubMed  CAS  Google Scholar 

  26. Caspi, O., Huber, I., Kehat, I., Xie, X., Fu, J. D., Drukker, M., et al. (2007). Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. Journal of the American College of Cardiology, 50, 1884–1893.

    Article  PubMed  Google Scholar 

  27. Dai, W., Field, L. J., Rubart, M., Reuter, S., Hale, S. L., Zweigerdt, R., et al. (2007). Survival and maturation of human embryonic stem cell-derived cardiomyocytes in rat hearts. Journal of Molecular and Cellular Cardiology, 43, 504–516.

    Article  PubMed  CAS  Google Scholar 

  28. Leor, J., Gerecht, S., Cohen, S., Miller, L., Holbova, R., Ziskind, A., et al. (2007). Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart, 93, 1278–1284.

    Article  PubMed  Google Scholar 

  29. Xie, C. Q., Zhang, J., Xiao, Y., Zhang, L., Mou, Y., Liu, X., et al. (2007). Transplantation of human undifferentiated embryonic stem cells into a myocardial infarction rat model. Stem Cells and Development, 16, 25–29.

    Article  PubMed  CAS  Google Scholar 

  30. Van Laake, L. W., Passier, R. P., Monshouwer-Kloots, J., Verkleij, A. J., Lips, D. J., Freund, C., et al. (2007). Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Research, 1, 9–24.

    Article  PubMed  Google Scholar 

  31. Tomescot, A., Leschik, J., Bellamy, V., Dubois, G., Messas, E., Bruneval, P., et al. (2007). Differentiation in vivo of cardiac committed human embryonic stem cells in post-myocardial infarcted rats. Stem Cells, 25, 2200–2205.

    Article  PubMed  CAS  Google Scholar 

  32. Cao, F., Wagner, R. A., Wilson, K. D., Xie, X., Fu, J. D., Drukker, M., et al. (2008). Transcriptional and functional profiling of human embryonic stem cell-derived cardiomyocytes. PLoS One, 3, e3474.

    Article  PubMed  Google Scholar 

  33. Puymirat, E., Geha, R., Tomescot, A., Bellamy, V., Larghero, J., Trinquart, L., et al. (2009). Can mesenchymal stem cells induce tolerance to cotransplanted human embryonic stem cells? Molecular Therapy, 17, 176–182.

    Article  PubMed  CAS  Google Scholar 

  34. Fernandes, S., Naumova, A. V., Zhu, W. Z., Laflamme, M. A., Gold, J., & Murry, C. E. (2010). Human embryonic stem cell-derived cardiomyocytes engraft but do not alter cardiac remodeling after chronic infarction in rats. Journal of Molecular and Cellular Cardiology, 49, 941–949.

    Article  PubMed  CAS  Google Scholar 

  35. Habib, M., Shapira-Schweitzer, K., Caspi, O., Gepstein, A., Arbel, G., Aronson, D., et al. (2011). A combined cell therapy and in-situ tissue-engineering approach for myocardial repair. Biomaterials, 32, 7514–7523.

    Article  PubMed  CAS  Google Scholar 

  36. Yeghiazarians, Y., Gaur, M., Zhang, Y., Sievers, R. E., Ritner, C., Prasad, M., et al. (2011). Myocardial improvement with human embryonic stem cell-derived cardiomyocytes enriched by p38MAPK inhibition. Cytotherapy. doi:10.3109/14653249.2011.623690.

  37. Smits, A. M., van Laake, L. W., den Ouden, K., Schreurs, C., Szuhai, K., van Echteld, C. J., et al. (2009). Human cardiomyocyte progenitor cell transplantation preserves long-term function of the infarcted mouse myocardium. Cardiovascular Research, 83, 527–535.

    Article  PubMed  CAS  Google Scholar 

  38. Song, H., Yoon, C., Kattman, S. J., Dengler, J., Massé, S., Thavaratnam, T., et al. (2010). Regenerative medicine special feature: interrogating functional integration between injected pluripotent stem cell-derived cells and surrogate cardiac tissue. Proc Natl Acad Sci USA, 107, 3329–3334.

    Article  PubMed  CAS  Google Scholar 

  39. Pillekamp, F., Reppel, M., Rubenchyk, O., Pfannkuche, K., Matzkies, M., Bloch, W., et al. (2007). Force measurements of human embryonic stem cell-derived cardiomyocytes in an in vitro transplantation model. Stem Cells, 25, 174–180.

    Article  PubMed  Google Scholar 

  40. Van Laake, L. W., Passier, R., den Ouden, K., Schreurs, C., Monshouwer-Kloots, J., Ward-van Oostwaard, D., et al. (2009). Improvement of mouse cardiac function by hESC-derived cardiomyocytes correlates with vascularity but not graft size. Stem Cell Research, 3, 106–112.

    Article  PubMed  Google Scholar 

  41. Singla, D. K., & McDonald, D. E. (2010). Factors released from embryonic stem cells inhibit apoptosis of H9c2 cells. American Journal of Physiology - Heart and Circulatory Physiology, 293, H1590–H1595.

    Article  Google Scholar 

  42. Cristosomo, P. R., Abarbanell, A. M., Wang, M., Lahm, T., Wang, Y., & Meldrum, D. R. (2010). Embryonic stem cells attenuate myocardial dysfunction and inflammation after surgical global ischemia via paracrine actions. American Journal of Physiology - Heart and Circulatory Physiology, 95, H1726–H1735.

    Google Scholar 

  43. Blin, G., Nury, D., StefanovicS, N. T., Guillevic, O., Brinon, B., Bellamy, V., et al. (2010). A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in post-myocardial infarcted non-human primates. The Journal of Clinical Investigation, 120, 1125–1139.

    Article  PubMed  CAS  Google Scholar 

  44. Nakahara, M., Saeki, K., Nakamura, N., Matsuyama, S., Yogiashi, Y., Yasuda, K., et al. (2009). Human embryonic stem cells with maintenance under a feeder-free and recombinant cytokine-free condition. Cloning and Stem Cells, 11, 5–18.

    Article  PubMed  CAS  Google Scholar 

  45. Ilic, D., Stephenson, E., Wood, V., Jacquet, L., Stevenson, D., Petrova, A., et al. (2012). Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy, 14, 122–128.

    Article  PubMed  CAS  Google Scholar 

  46. Goldring, C. E., Duffy, P. A., Benvenisty, N., Andrews, P. W., Ben-David, U., Eakins, R., et al. (2011). Assessing the safety of stem cell therapeutics. Cell Stem Cell, 8, 618–628.

    Article  PubMed  CAS  Google Scholar 

  47. Hentze, H., Soong, P. L., Wang, S. T., Phillips, B. W., Putti, T. C., & Dunn, N. R. (2009). Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Research, 2, 198–210.

    Article  PubMed  Google Scholar 

  48. Kirouac, D. C., & Zandstra, P. W. (2008). The systematic production of cells for cell therapies. Cell Stem Cell, 3, 369–381.

    Article  PubMed  CAS  Google Scholar 

  49. Mayorga, M., Finan, A., & Penn, M. (2009). Pre-transplantation specification of stem cells to cardiac lineage for regeneration of cardiac tissue. Stem Cell Reviews and Reports, 5, 51–60.

    Article  PubMed  CAS  Google Scholar 

  50. Pucéat, M. (2007). TGF-β in the differentiation of embryonic stem cells. Cardiovascular Research, 74, 256–261.

    Article  PubMed  Google Scholar 

  51. Kattman, S. J., Huber, T. L., & Keller, G. M. (2006). Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Developmental Cell, 11, 723–732.

    Article  PubMed  CAS  Google Scholar 

  52. Yang, L., Soonpaa, M. H., Adler, E. D., Roepke, T. K., Kattman, S. J., Kennedy, M., et al. (2008). Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature, 453, 524–528.

    Article  PubMed  CAS  Google Scholar 

  53. Stefanovic, S., Abboud, N., Désilets, S., Nury, D., Cowan, C., & Pucéat, M. (2009). Interplay of Oct4 with Sox2 and Sox17: a molecular switch from stem cell pluripotency to specifying a cardiac fate. The Journal of Cell Biology, 186, 665–673.

    Article  PubMed  CAS  Google Scholar 

  54. Loh, K. M., & Lim, B. (2011). A precarious balance: pluripotency factors as lineage specifiers. Cell Stem Cell, 8, 363–369.

    Article  PubMed  CAS  Google Scholar 

  55. Hentze, H., Graichen, R., & Colman, A. (2006). Cell therapy and the safety of embryonic stem cell-derived grafts. Trends in Biotechnology, 25, 24–32.

    Article  PubMed  Google Scholar 

  56. Kiuru, M., Boyer, J., O’Connor, T. P., & Crystal, R. G. (2009). Genetic control of wayward pluripotent stem cells and their progeny after transplantation. Cell Stem Cell, 4, 289–300.

    Article  PubMed  CAS  Google Scholar 

  57. Behfar, A., Hodgson, D. M., Zingman, L. V., Perez-Terzic, C., Yamada, S., Kane, G. C., et al. (2005). Administration of allogenic stem cells dosed to secure cardiogenesis and sustained infarct repair. Annals of the New York Academy of Sciences, 1049, 189–198.

    Article  PubMed  Google Scholar 

  58. Prokhorova, T. A., Harkness, L. M., Frandsen, U., Ditzel, N., Schrøder, H. D., Burns, J. S., et al. (2008). Teratoma formation by human embryonic stem cells is site-dependent and enhanced by the presence of Matrigel. Stem Cells and Development, 18, 47–54.

    Article  Google Scholar 

  59. Calderon, D., Planat-Benard, V., Bellamy, V., Vanneaux, V., Khun, C., Peyrard, S., et al. (2011). Immune response to human embryonic stem cell-derived cardiac progenitors and adipose-derived stromal cells. Journal of Cellular and Molecular Medicine. doi:10.1111/j.1582-4934.2011.01435.

  60. Grinnemo, K. H., Kumagai-Braesch, M., Mansson-Broberg, A., Månsson-Broberg, A., Skottman, H., Hao, X., et al. (2006). Human embryonic stem cells are immunogenic in allogeneic and xenogeneic settings. Reproductive Biomedicine Online, 13, 712–724.

    Article  PubMed  CAS  Google Scholar 

  61. Swijnenburg, R. J., Schrepner, S., Govaert, J., Cao, F., Ransohoff, K., Sheikh, A. Y., et al. (2008). Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proceedings of the National Academy of Sciences of the United State of America, 105, 12991–12996.

    Article  CAS  Google Scholar 

  62. Heydendael, V. M., Spuls, P. I., Ten Berge, I. J., Opmeer, B. C., Bos, J. D., & de Rie, M. A. (2002). Cyclosporin trough levels: is monitoring necessary during short-term treatment in psoriasis? A systematic review and clinical data on trough levels. British Journal of Dermatology, 147, 22–129.

    Article  Google Scholar 

  63. Lindvall, O., & Kokaia, Z. (2009). Prospects of stem cell therapy for replacing dopamine neurons in Parkinson’s disease. Trends in Pharmacological Sciences, 30, 260–267.

    Article  PubMed  CAS  Google Scholar 

  64. Taylor, C. J., Bolton, E. M., Pocock, S., Sharples, L. D., Pedersen, R. A., & Bradley, A. (2005). Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet, 366, 2019–2025.

    Article  PubMed  Google Scholar 

  65. Fraga, A. M., Sukoyan, M., Rajan, P., de Almeida, P., Ferreira Braga, D., Iaconelli, A., et al. (2011). Establishment of a Brazilian line of human embryonic stem cells in defined medium: implications for cell therapy in an ethnically diverse population. Cell Transplantation, 20, 431–440.

    Article  PubMed  Google Scholar 

  66. Fairchild, P. (2010). The challenge of immunogenicity in the quest for induced pluripotency. Nature Reviews Immunology, 10, 868–875.

    Article  PubMed  CAS  Google Scholar 

  67. Scandling, J. D., Busque, S., Shizuru, J. A., Engleman, E. G., & Strober, S. (2011). Induced immune tolerance for kidney transplantation. New England Journal of Medicine, 365, 1359–1360.

    Article  PubMed  CAS  Google Scholar 

  68. Chidgey, A. P., Layton, D., Trounson, A., & Boyd, R. (2008). Tolerance strategies for stem-cell-based therapies. Nature, 453, 330–337.

    Article  PubMed  CAS  Google Scholar 

  69. Chatenoud, L. (2003). CD3-specific antibody-induced active tolerance: from bench to bedside. Nature Reviews Immunology, 3, 123–132.

    Article  PubMed  CAS  Google Scholar 

  70. Keymeulen, B., Walter, M., Mathieu, C., Kaufman, L., Gorus, F., Hilbrands, R., et al. (2010). Four-year metabolic outcome of a randomised controlled CD3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual beta cell mass. Diabetologia, 53, 614–623.

    Article  PubMed  CAS  Google Scholar 

  71. Fukushima, S., Varela-Carver, A., Coppen, S. R., Yamahara, K., Felkin, L. E., Lee, J., et al. (2007). Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model. Circulation, 115, 2254–2261.

    Article  PubMed  Google Scholar 

  72. Zvibel, I., Smets, F., & Soriano, H. (2002). Anoikis: roadblock to cell transplantation? Cell Transplantation, 11, 621–630.

    PubMed  Google Scholar 

  73. Robey, T. E., Saiget, M. K., Reinecke, H., & Murry, C. E. (2008). Systems approaches to preventing transplanted cell death in cardiac repair. Journal of Molecular and Cellular Cardiology, 45, 567–581.

    Article  PubMed  CAS  Google Scholar 

  74. Stevens, K. R., Kreutziger, K. L., Dupras, S. K., Korte, F. S., Regnier, M., Muskheli, V., et al. (2009). Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proceedings of the National Academy of Sciences of the United States of America, 106, 16568–16573.

    Article  PubMed  CAS  Google Scholar 

  75. Matsuura, K., Honda, A., Nagai, T., Fukushima, N., Iwanaga, K., Tokunaga, M., et al. (2009). Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. The Journal of Clinical Investigation, 119, 2204–2217.

    PubMed  CAS  Google Scholar 

  76. Zakharova, L., Mastroeni, D., Mutlu, N., Molina, M., Goldman, S., Diethrich, E., et al. (2010). Transplantation of cardiac progenitor cell sheet onto infarcted heart promotes cardiogenesis and improves function. Cardiovascular Research, 87, 40–49.

    Article  PubMed  CAS  Google Scholar 

  77. Matsuura, K., Masuda, S., Haraguchi, Y., Yasuda, N., Shimizu, T., Hagiwara, N., et al. (2011). Creation of mouse embryonic stem cell-derived cardiac cell sheets. Biomaterials, 32, 7355–7362.

    Article  PubMed  CAS  Google Scholar 

  78. Hamdi, H., Furuta, A., Bellamy, V., Bel, A., Puymirat, E., Peyrard, S., et al. (2009). Cell delivery: intramyocardial injections or epicardial deposition? A head-to-head comparison. The Annals of Thoracic Surgery, 87, 1196–1203.

    Article  PubMed  Google Scholar 

  79. Xiong, Q., Hill, K. L., Li, Q., Suntharalingam, P., Mansoor, A., Wang, X., et al. (2011). A fibrin patch-based enhanced delivery of human embryonic stem cell-derived vascular cell transplantation in a porcine model of postinfarction left ventricular remodeling. Stem Cells, 29, 367–375.

    Article  PubMed  CAS  Google Scholar 

  80. Baharvand, H., Azarnia, M., Parivar, K., & Ashtiani, S. K. (2005). The effect of extracellular matrix on embryonic stem cell-derived cardiomyocytes. Journal of Molecular and Cellular Cardiology, 38, 495–503.

    Article  PubMed  CAS  Google Scholar 

  81. Duan, Y., Liu, Z., O’Neill, J., Wan, L. Q., Freytes, D. O., & Vunjak-Novakovic, G. (2011). Hybrid gel composed of native heart matrix and collagen induces cardiac differentiation of human embryonic stem cells without supplemental growth factors. Journal of Cardiovascular Translational Research, 5, 605–615.

    Article  Google Scholar 

  82. Lu, W. N., Lü, S. H. L., Wang, H. B., Li, D. X., Duan, C. M., Liu, Z. Q., et al. (2009). Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Engineering. Part A, 15, 1437–1447.

    Article  PubMed  CAS  Google Scholar 

  83. Yu, J., Du, K. T., Fang, Q., Gu, Y., Mihardja, S. S., Sievers, R. E., et al. (2010). The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials, 27, 7012–7020.

    Article  Google Scholar 

  84. Kraehenbuehl, T. P., Zammaretti, P., Van der Vlies, A. J., Schoenmakers, R. G., Lutolf, M. P., Jaconi, M. E., et al. (2008). Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials, 29, 2757–2766.

    Article  PubMed  CAS  Google Scholar 

  85. Wang, H., Liu, Z., Li, D., Guo, X., Kasper, F. K., Duan, C., et al. (2011). Injectable biodegradable hydrogels for embryonic stem cell transplantation: improved cardiac remodeling and function of myocardial infarction. Cellular and Molecular Medicine. doi:10.1111/j.1582-4934.2011.01409.

  86. Singelyn, J. M., DeQuach, J. A., Seif-Naraghi, S. B., Littlefield, R. B., Schup-Magoffin, P. J., & Christman, K. L. (2009). Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials, 30, 5409–5416.

    Article  PubMed  CAS  Google Scholar 

  87. Aguado, B. A., Mulyasasmita, W., Su, J., Lampe, K. L., & Heilshorn, S. C. (2011). Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Engineering. Part A. doi:10.1089/ten.tea.2011.0391.

  88. Nguyen, P. K., Lan, F., Wang, Y., & Wu, J. C. (2011). Guiding the clinical translation of cardiac stem cell therapy. Circulation Research, 109, 962–979.

    Article  PubMed  CAS  Google Scholar 

  89. Sekine, H., Shimizu, T., Hobo, K., Sekiya, S., Yang, J., Yamato, M., et al. (2008). Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation, 118, S145–S152.

    Article  PubMed  CAS  Google Scholar 

  90. Winter, E. M., van Oorschot, H. B., van der Graaf, L. M., Doevendans, P. A., Poelmann, R. E., Atsma, D. E., et al. (2009). A new direction for cardiac regeneration therapy. Application of synergistically acting epicardium-derived cells and cardiomyocyte progenitor cells. Circulation of Heart Failure, 2, 643–653.

    Article  Google Scholar 

  91. Sekine, H., Shimizu, T., Dobashi, I., Matsuura, K., Hagiwara, N., Takahashi, M., et al. (2011). Cardiac cell sheet transplantation improves damaged heart function via superior cell survival in comparison with dissociated cell injection. Tissue Engineering. Part A, 17, 2973–2980.

    Article  PubMed  CAS  Google Scholar 

  92. Hamdi, H., Planat-Benard, V., Bel, A., Puymirat, E., Geha, R., Pidial, L., et al. (2011). Epicardial adipose stem cell sheets results in greater post-infarction survival than intramyocardial injections. Cardiovascular Research, 91, 483–491.

    Article  PubMed  CAS  Google Scholar 

  93. Guilak, F., Cohen, D. M., Estes, B. T., Gimble, J. M., Liedtke, W., & Chen, C. S. (2009). Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell, 5, 17–26.

    Article  PubMed  CAS  Google Scholar 

  94. Zarembinski, T. I., Tew, W. P., Atzet, S. K. The use of a hydrogel matrix as a cellular delivery vehicle in future cell-based therapies: biological and non-biological considerations. In: D. Eberli (Ed.), Regenerative medicine and tissue engineering—cells and biomaterials. ISBN: 978-953-307-663-8, InTech available from:hhow/title/ttp://www.intechopen.com/articles/show/title/ the-use-of-a-hydrogel- matrix-as-a-cellular-delivery-vehicle-in-future-cell-based therapies-biologica.

  95. Zoldan, J., Karagiannis, E., Lee, C. Y., Anderson, D. G., Langer, R., & Levenberg, S. (2011). The influence of scaffold elasticity on germ layer specification of human embryonic stem cells. Biomaterials, 32, 9612–9621.

    Article  PubMed  CAS  Google Scholar 

  96. Miyagi, Y., Chiu, L. L., Cimini, M., Weisel, R. D., Radisic, M., & Li, R. K. (2011). Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials, 32, 1280–1290.

    Article  PubMed  CAS  Google Scholar 

  97. Amsalem, Y., Mardor, Y., Feinberg, M. S., Landa, N., Miller, L., Daniels, D., et al. (2007). Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation, 116(11 Suppl), I38–I145.

    PubMed  CAS  Google Scholar 

  98. Yaghoubi, S. S., Jensen, M. C., Satyamurthy, N., Budhiraja, S., Paik, D., Czernin, J., et al. (2009). Noninvasive detection of therapeutic cytolytic T cells with 18F-FHBG PET in a patient with glioma. Nature Clinical Practice Oncology, 6, 53–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly funded by the LeDucq Foundation (SHAPEHEART network).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Menasché.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menasché, P. Embryonic Stem Cells for Severe Heart Failure: Why and How?. J. of Cardiovasc. Trans. Res. 5, 555–565 (2012). https://doi.org/10.1007/s12265-012-9356-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9356-9

Keywords

Navigation