Skip to main content

Advertisement

Log in

Molecular pathways to CML stem cells

  • Progress in Hematology
  • Molecular pathogenesis of leukemia and leukemia stem cells
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Imatinib has revolutionized the treatment of chronic myeloid leukemia (CML), but it does not cure the disease. Many patients never achieve significant cytogenetic or molecular responses. Some develop resistance to the drug, while others are simply unable to tolerate it. Unfortunately, most will relapse if the drug is discontinued. This is particularly true in patients with advanced disease, who tend to develop resistance rapidly and are unlikely to achieve durable remission with single-agent tyrosine kinase inhibitor therapy. A growing body of evidence suggests that the reason imatinib does not cure CML is that it is unable to eradicate the leukemic stem cells (LSC). LSC are a tiny population of cancer cells with the capacity to recapitulate the disease. These quiescent cells have subverted properties of normal hematopoietic stem cells, allowing them to avoid apoptosis, evade innate immunity, renew themselves, and survive long term. Here, we review the studies that have identified the deregulated molecular pathways responsible for the generation of CML stem cells and discuss implications for therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Deininger M, O’Brien SG, et al. International randomized study of interferon vs STI571 (IRIS) 8-year follow up: sustained survival and low risk for progression or events in patients with newly diagnosed chronic myeloid leukemia in chronic phase (CML-CP) treated with imatinib. Blood. 2009;114 (ASH Annual Meeting Abstract 1126).

  2. Mahon F, Rea D, et al. Persistence of complete molecular remission in chronic myeloid leukemia after imatinib discontinuation: interim analysis of the STIM trial. J Clin Oncol 2009;27(15s) (Abstract 7084).

  3. Graham SM, Jorgensen HG, et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood. 2002;99(1):319–25.

    Article  CAS  PubMed  Google Scholar 

  4. Minami Y, Stuart SA, et al. BCR-ABL-transformed GMP as myeloid leukemic stem cells. PNAS. 2008;105(46):17967–72.

    Google Scholar 

  5. Jamieson CHM. Chronic myeloid leukemia stem cells. Hematology. 2008. p. 436–42.

  6. Kavalerchik E, Goff D, Jamieson CHM. Chronic myeloid leukemia stem cells. J Clin Oncol. 2008;26(17):2911–5.

    Article  PubMed  Google Scholar 

  7. Lapidot T, Sirard C, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.

    Article  CAS  PubMed  Google Scholar 

  8. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.

    Article  CAS  PubMed  Google Scholar 

  9. Chomel JC, Brizard F, et al. Persistence of BCR-ABL genomic rearrangement in chronic myeloid leukemia patients in complete and sustained cytogenetic remission after interferon-alpha therapy or allogeneic bone marrow transplantation. Blood. 2000;95(2):404–9.

    CAS  PubMed  Google Scholar 

  10. Bose S, Deininger M, et al. The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood. 1998;92(9):3362–7.

    CAS  PubMed  Google Scholar 

  11. Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science. 1990;247:824–30.

    Article  CAS  PubMed  Google Scholar 

  12. Elefanty AG, Hariharan IK, Cory S. bcr-abl, the hallmark of chronic myeloid leukaemia in man, induces multiple haematopoietic neoplasms in mice. EMBO J. 1990;9(4):1069–78.

    CAS  PubMed  Google Scholar 

  13. Kelliher MA, McLaughlin J, et al. Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. PNAS. 1990;87(22):9072.

    Article  CAS  Google Scholar 

  14. Jaiswal S, Traver D, et al. Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias. PNAS. 2003;100(17):10002–7.

    Article  CAS  PubMed  Google Scholar 

  15. Jamieson CHM, Ailles LE, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast crisis CML. NEJM. 2004;351(7):657–67.

    Article  CAS  PubMed  Google Scholar 

  16. Reya T, Morrison SJ, et al. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.

    Article  CAS  PubMed  Google Scholar 

  17. Reya T, Duncan AW, et al. A role for Wnt signaling in self-renewal of haematopoietic stem cells. Nature. 2003;423:409–14.

    Article  CAS  PubMed  Google Scholar 

  18. Passegue E, Jamieson CHM, et al. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? PNAS. 2003;100(Suppl 1):11842–9.

    Article  CAS  PubMed  Google Scholar 

  19. Reya T, Clevers H. Wnt signaling in stem cells and cancer. Nature. 2005;434:843–50.

    Article  CAS  PubMed  Google Scholar 

  20. Duncan AW, Rattis FM, et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol. 2005;6(3):314–22.

    Article  CAS  PubMed  Google Scholar 

  21. Abrahamsson AE, Geron I, et al. Glycogen synthase kinase 3beta missplicing contributes to leukemia stem cell generation. PNAS. 2009;106(10):3925–9.

    Article  CAS  PubMed  Google Scholar 

  22. Varnum-Finney B, Xu L, et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med. 2000;6(11):1278–81.

    Article  CAS  PubMed  Google Scholar 

  23. Weng AP, Ferrando AA, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306:269–71.

    Article  CAS  PubMed  Google Scholar 

  24. Deangelo DJ, Stone RM, et al. A phase I clinical trial of the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma T-ALL and other leukemias. J Clin Oncol. 2006;24(18S):658S (ASCO annual meeting proceedings).

  25. Nakahara F, Sakata-Yanagimoto M, et al. Hes1 immortalizes committed progenitors and plays a role in blast crisis transition in chronic myelogenous leukemia. Blood. 2010;115(14):2872–81.

    Google Scholar 

  26. Taipale J, Beachy PA. The Hedgehog and Wnt signaling pathways in cancer. Nature. 2001;411:349–54.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Kalderon D. Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature. 2001;410:599–604.

    Article  CAS  PubMed  Google Scholar 

  28. Hofmann I, Stover EH, et al. Hedgehog signaling is dispensable for adult murine hematopoietic stem cell function and hematopoiesis. Cell Stem Cell. 2009;4(6):559–67.

    Google Scholar 

  29. Zhao C, Chen A, et al. Hedgehog signaling is essential for maintenance of cancer stem cells in myeloid leukemia. Nature. 2009;458:776–9.

    Article  CAS  PubMed  Google Scholar 

  30. Abrahamsson-Schairer AE, Shih A, et al. Smoothening the way for human leukemia stem cell inhibition in chronic myeloid leukemia. American Association for Cancer Research 2010 Annual Meeting Abstract LB-258.

  31. McGahon A, Bissonnette R, et al. BCR-ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death. Blood. 1994;83(5):1179–87.

    CAS  PubMed  Google Scholar 

  32. Sanchez-Garcia I, Grutz G. Tumorigenic activity of the BCR-ABL oncogenes is mediated by BCL2. PNAS. 1995;92(12):5287–91.

    Article  CAS  PubMed  Google Scholar 

  33. Bedi A, Barber JP, et al. BCR-ABL-mediated inhibition of apoptosis with delay of G2/M transition after DNA damage: a mechanism of resistance to multiple anticancer agents. Blood. 1995;86(3):1148–58.

    CAS  PubMed  Google Scholar 

  34. Nishii K, Kabarowski JH, et al. BCR-ABL kinase activation confers increased resistance to genotoxic damage via cell cycle block. Oncogene. 1996;13(10):225–34.

    Google Scholar 

  35. Bedi A, Zehnbauer BA, et al. Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood. 1994;83(8):2038–44.

    CAS  PubMed  Google Scholar 

  36. Gaiger A, Henn T, et al. Increase of bcr-abl chimeric mRNA expression in tumor cells of patients with chronic myeloid leukemia precedes disease progression. Blood. 1995;86(6):2371–8.

    CAS  PubMed  Google Scholar 

  37. Cambier N, Chopra R, et al. BCR-ABL activates pathways mediating cytokine independence and protection against apoptosis in murine hematopoietic cells in a dose-dependent manner. Oncogene. 1998;16(3):335–48.

    Article  CAS  PubMed  Google Scholar 

  38. Gesbert F, Griffin JD. Bcr/Abl activates transcription of the Bcl-X gene through STAT5. Blood. 2000;96(6):2269–76.

    CAS  PubMed  Google Scholar 

  39. Horita M, Andreu EJ, et al. Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL. J Exp Med. 2000;191(6):977–84.

    Article  CAS  PubMed  Google Scholar 

  40. De Groot RP, Raaijmakers JA, et al. STAT5-Dependent CyclinD1 and Bcl-xL expression in Bcr-Abl-transformed cells. Mol Cell Biol Res Commun. 2000;3(5):299–305.

    Article  PubMed  Google Scholar 

  41. Goff DJ, Abrahamsson-Schairer A, et al. The broad spectrum Bcl-2 inhibitor apogossypol induces apoptosis and differentiation of blast crisis chronic myeloid leukemia stem cells. 2009 (American Society of Hematology Annual Meeting Poster 3275).

  42. Jaiswal S, Jamieson CHM, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009;138(2):271–85.

    Article  CAS  PubMed  Google Scholar 

  43. Majeti R, Chao MP, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009;138(2):286–99.

    Article  CAS  PubMed  Google Scholar 

  44. Sengupta A, Banergee D, et al. Deregulation and cross talk among Sonic hedgehog, Wnt, Hox, and Notch signaling in chronic myeloid leukemia progression. Leukemia. 2007;21:949–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catriona H. M. Jamieson.

About this article

Cite this article

Rice, K.N., Jamieson, C.H.M. Molecular pathways to CML stem cells. Int J Hematol 91, 748–752 (2010). https://doi.org/10.1007/s12185-010-0615-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-010-0615-8

Keywords

Navigation