Skip to main content

Advertisement

Log in

The role of cancer stem cells in neoplasia of the lung: past, present and future

  • Reviews
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Through the identification and subsequent targeting of an exquisitely unique and phenotypically defined cancer stem-cell population exhibiting discrete therapeutic vulnerabilities (a potential source of tumor recurrence) better survival rates for these patients may be achieved. It is this impetus that is making the field of pulmonary stem cell biology a growing field in biomedicine. These efforts are leading to the steady identification of multi-potent, self-renewing and proliferative progenitor cell populations throughout the bronchopulmonary tree. These cells give rise to both transiently amplifying (TA) and terminally differentiated (TD) cells, which (like in many other organs) are crucial for tissue homeostasis. In leukemia, it has been shown that partially committed cells, which are normally responsible for tissue maintenance after trauma, may undergo transformation via mutations resulting in the selective expression of genes that accentuate and perpetuate these cells’ self-renewal capabilities. It is therefore perhaps legitimate to consider stem cells as protumorigenic. It is when these cells undergo genetic mutations which make them acquire the ability to metastasize, that cancer occurs, rendering the concept of ‘cancer stem cells’ a rather attractive one indeed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55: 74–108

    PubMed  Google Scholar 

  2. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer statistics, 2007. CA Cancer J Clin 57:43–66

    Article  PubMed  Google Scholar 

  3. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  PubMed  CAS  Google Scholar 

  4. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445: 106–110

    Article  PubMed  CAS  Google Scholar 

  5. Ricci-Vitiani L, Lombardi DG, Pilozzi E et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    Article  PubMed  CAS  Google Scholar 

  6. Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    Article  PubMed  CAS  Google Scholar 

  7. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  8. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  9. Li C, Heidt DG, Dalerba P et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    Article  PubMed  CAS  Google Scholar 

  10. Prince ME, Sivanandan R, Kaczorowski A et al (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 104:973–978

    Article  PubMed  CAS  Google Scholar 

  11. Dalerba P, Dylla SJ, Park IK et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104:10158–10163

    Article  PubMed  CAS  Google Scholar 

  12. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  PubMed  CAS  Google Scholar 

  13. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902

    Article  PubMed  CAS  Google Scholar 

  14. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea-a paradigm shift. Cancer Res 66:1883–1890; discussion 1895–1896

    Article  PubMed  CAS  Google Scholar 

  15. Rawlins EL, Hogan BL (2006) Epithelial stem cells of the lung: privileged few or opportunities for many? Development 133:2455–2465

    Article  PubMed  CAS  Google Scholar 

  16. Berns A (2005) Stem cells for lung cancer? Cell 121:811–813

    Article  PubMed  CAS  Google Scholar 

  17. Hong KU, Reynolds SD, Giangreco A, Hurley CM, Stripp BR (2001) Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol 24:671–681

    PubMed  CAS  Google Scholar 

  18. Benitah SA, Frye M, Glogauer M, Watt FM (2005) Stem cell depletion through epidermal deletion of Rac1. Science 309:933–935

    Article  PubMed  CAS  Google Scholar 

  19. Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ (1997) Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 89:3104–3112

    PubMed  CAS  Google Scholar 

  20. Passegue E, Jamieson CH, Ailles LE, Weissman IL (2003) Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci U S A 100[Suppl 1]:11842–11849

    Article  PubMed  CAS  Google Scholar 

  21. Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci U S A 101:781–786

    Article  PubMed  CAS  Google Scholar 

  22. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2-cancer cells are similarly tumorigenic. Cancer Res 65:6207–6219

    Article  PubMed  CAS  Google Scholar 

  23. Hirschmann-Jax C, Foster AE, Wulf GG, Goodell MA, Brenner MK (2005) A distinct “side population” of cells in human tumor cells: implications for tumor biology and therapy. Cell Cycle 4:203–20

    PubMed  CAS  Google Scholar 

  24. Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  PubMed  CAS  Google Scholar 

  25. Hemmati HD, Nakano I, Lazareff JA et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100: 15178–15183

    Article  PubMed  CAS  Google Scholar 

  26. Hochedlinger K, Yamada Y, Beard C, Jaenisch R (2005) Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121:465–477

    Article  PubMed  CAS  Google Scholar 

  27. Fisher GH, Wellen SL, Klimstra D et al (2001) Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev 15:3249–3262

    Article  PubMed  CAS  Google Scholar 

  28. Lo Celso C, Prowse DM, Watt FM (2004) Transient activation of beta-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development 131:1787–1799

    Article  PubMed  CAS  Google Scholar 

  29. Barrandon Y, Morgan JR, Mulligan RC, Green H (1989) Restoration of growth potential in paraclones of human keratinocytes by a viral oncogene. Proc Natl Acad Sci U S A 86:4102–4106

    Article  PubMed  CAS  Google Scholar 

  30. Pelengaris S, Littlewood T, Khan M, Elia G, Evan G (1999) Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol Cell 3:565–577

    Article  PubMed  CAS  Google Scholar 

  31. Owens DM, Watt FM (2003) Contribution of stem cells and differentiated cells to epidermal tumours. Nat Rev Cancer 3:444–451

    Article  PubMed  CAS  Google Scholar 

  32. Meuwissen R, Berns A (2005) Mouse models for human lung cancer. Genes Dev 19:643–664

    Article  PubMed  CAS  Google Scholar 

  33. Franklin WA, Gazdar AF, Haney J et al (1997) Widely dispersed p53 mutation in respiratory epithelium. A novel mechanism for field carcinogenesis. J Clin Invest 100:2133–2137

    Article  PubMed  CAS  Google Scholar 

  34. Braakhuis BJ, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH et al (2003) A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res 63:1727–1730

    PubMed  CAS  Google Scholar 

  35. Meuwissen R, Linn SC, van der Valk M, Mooi WJ, Berns A et al (2001) Mouse model for lung tumorigenesis through Cre/lox controlled sporadic activation of the K-Ras oncogene. Oncogene 20:6551–6558

    Article  PubMed  CAS  Google Scholar 

  36. Johnson L, Mercer K, Greenbaum D et al (2001) Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410: 1111–1116

    Article  PubMed  CAS  Google Scholar 

  37. Jackson EL, Willis N, Mercer K et al (2001) Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15:3243–3248

    Article  PubMed  CAS  Google Scholar 

  38. Guerra C, Mijimolle N, Dhawahir A et al (2003) Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell 4:111–120

    Article  PubMed  CAS  Google Scholar 

  39. Giangreco A, Groot KR, Janes SM (2007) Lung cancer and lung stem cells: strange bedfellows? Am J Respir Crit Care Med 175:547–553

    Article  PubMed  Google Scholar 

  40. Giangreco A, Shen H, Reynolds SD, Stripp BR (2004) Molecular phenotype of airway side population cells. Am J Physiol Lung Cell Mol Physiol 286:L624–630

    Article  PubMed  CAS  Google Scholar 

  41. Williams BO, Remington L, Albert DM, Mukai S, Bronson RT, Jacks T (1994) Cooperative tumorigenic effects of germline mutations in Rb and p53. Nat Genet 7:480–484

    Article  PubMed  CAS  Google Scholar 

  42. Wikenheiser-Brokamp KA (2004) Rb family proteins differentially regulate distinct cell lineages during epithelial development. Development 131:4299–4310

    Article  PubMed  CAS  Google Scholar 

  43. Meuwissen R, Linn SC, Linnoila RI, Zevenhoven J, Mooi WJ, Berns A (2003) Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell 4:181–189

    Article  PubMed  CAS  Google Scholar 

  44. Minna JD, Kurie JM, Jacks T (2003) A big step in the study of small cell lung cancer. Cancer Cell 4:163–166

    Article  PubMed  CAS  Google Scholar 

  45. Reynolds SD, Giangreco A, Power JH, Stripp BR (2000) Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. Am J Pathol 156:269–278

    PubMed  CAS  Google Scholar 

  46. Linnoila RI, Naizhen X, Meuwissen R, Berns A, DeMayo FJ (2005) Mouse lung neuroendocrine carcinomas: distinct morphologies, same transcription factors. Exp Lung Res 31:37–55

    Article  PubMed  CAS  Google Scholar 

  47. Linnoila RI, Sahu A, Miki M, Ball DW, DeMayo FJ (2000) Morphometric analysis of CC10-hASH1 transgenic mouse lung: a model for bronchiolization of alveoli and neuroendocrine carcinoma. Exp Lung Res 26:595–615

    Article  PubMed  CAS  Google Scholar 

  48. Van Lommel A, Bolle T, Fannes W, Lauweryns JM (1999) The pulmonary neuroendocrine system: the past decade. Arch Histol Cytol 62:1–16

    Article  PubMed  Google Scholar 

  49. Miller LA, Wert SE, Whitsett JA (2001) Immunolocalization of sonic hedgehog (Shh) in developing mouse lung. J Histochem Cytochem 49:1593–1604

    PubMed  CAS  Google Scholar 

  50. Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB (2003) Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422:313–317

    Article  PubMed  CAS  Google Scholar 

  51. Collins BJ, Kleeberger W, Ball DW (2004) Notch in lung development and lung cancer. Semin Cancer Biol 14:357–364

    Article  PubMed  CAS  Google Scholar 

  52. Ball DW, Azzoli CG, Baylin SB et al (1993) Identification of a human achaete-scute homolog highly expressed in neuroendocrine tumors. Proc Natl Acad Sci U S A 90:5648–5652

    Article  PubMed  CAS  Google Scholar 

  53. Kim CF, Jackson EL, Woolfenden AE et al (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835

    Article  PubMed  CAS  Google Scholar 

  54. Politi K, Zakowski MF, Fan PD, Schonfeld EA, Pao W, Varmus HE (2006) Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev 20:1496–1510

    Article  PubMed  CAS  Google Scholar 

  55. Ji H, Li D, Chen L et al (2006) The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell 9:485–495

    Article  PubMed  CAS  Google Scholar 

  56. Bottinger EP, Jakubczak JL, Haines DC, Bagnall K, Wakefield LM (1997) Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor beta receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7,12-dimethylbenz-[a]-anthracene. Cancer Res 57:5564–5570

    PubMed  CAS  Google Scholar 

  57. Wikenheiser KA, Clark JC, Linnoila RI, Stahlman MT, Whitsett JA (1992) Simian virus 40 large T antigen directed by transcriptional elements of the human surfactant protein C gene produces pulmonary adenocarcinomas in transgenic mice. Cancer Res 52:5342–5352

    PubMed  CAS  Google Scholar 

  58. DeMayo FJ, Finegold MJ, Hansen TN, Stanley LA, Smith B, Bullock DW (1991) Expression of SV40 T antigen under control of rabbit uteroglobin promoter in transgenic mice. Am J Physiol 261:L70–76

    PubMed  CAS  Google Scholar 

  59. Carney DN, Gazdar AF, Bunn PA, Jr., Guccion JG (1982) Demonstration of the stem cell nature of clonogenic tumor cells from lung cancer patients. Stem Cells 1:149–164

    PubMed  CAS  Google Scholar 

  60. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    Article  PubMed  CAS  Google Scholar 

  61. Gutova M, Najbauer J, Gevorgyan A et al (2007) Identification of uPAR-positive chemoresistant cells in small cell lung cancer. PLoS ONE 2:e243

    Article  PubMed  CAS  Google Scholar 

  62. Ho MM, Ng AV, Lam S, Hung JY (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67:4827–4833

    Article  PubMed  CAS  Google Scholar 

  63. Lowry WE, Richter L (2007) Signaling in adult stem cells. Front Biosci 12: 3911–3927

    Article  PubMed  CAS  Google Scholar 

  64. Liu J, Jiang G (2006) CD44 and hematologic malignancies. Cell Mol Immunol 3:359–365

    PubMed  CAS  Google Scholar 

  65. Naor D, Nedvetzki S, Golan I, Melnik L, Faitelson Y (2002) CD44 in cancer. Crit Rev Clin Lab Sci 39:527–579

    Article  PubMed  CAS  Google Scholar 

  66. Desai B, Rogers MJ, Chellaiah MA (2007) Mechanisms of osteopontin and CD44 as metastatic principles in prostate cancer cells. Mol Cancer 6:18

    Article  PubMed  CAS  Google Scholar 

  67. Le QT, Chen E, Salim A et al (2006) An evaluation of tumor oxygenation and gene expression in patients with early stage non-small cell lung cancers. Clin Cancer Res 12:1507–1514

    Article  PubMed  CAS  Google Scholar 

  68. Lee LN, Kuo SH, Lee YC et al (2005) CD44 splicing pattern is associated with disease progression in pulmonary adenocarcinoma. J Formos Med Assoc 104:541–548

    PubMed  CAS  Google Scholar 

  69. Shmelkov SV, St Clair R, Lyden D, Rafii S (2005) AC133/CD133/Prominin-1. Int J Biochem Cell Biol 37:715–719

    Article  PubMed  CAS  Google Scholar 

  70. Vescovi AL, Galli R, Reynolds BA (2006) Brain tumour stem cells. Nat Rev Cancer 6:425–436

    Article  PubMed  CAS  Google Scholar 

  71. Beier D, Hau P, Proescholdt M et al (2007) CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015

    Article  PubMed  CAS  Google Scholar 

  72. Eramo A, Lotti F, Sette G et al (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15:504–514

    Article  PubMed  CAS  Google Scholar 

  73. Hibi K, Takahashi T, Sekido Y et al (1991) Coexpression of the stem cell factor and the c-kit genes in small-cell lung cancer. Oncogene 6:2291–2296

    PubMed  CAS  Google Scholar 

  74. Pelosi G, Barisella M, Pasini F et al (2004) CD117 immunoreactivity in stage I adenocarcinoma and squamous cell carcinoma of the lung: relevance to prognosis in a subset of adenocarcinoma patients. Mod Pathol 17:711–721

    Article  PubMed  Google Scholar 

  75. Altundag O, Altundag K, Boruban C, Silay YS, Turen S (2005) Imatinib mesylate lacks activity in small cell lung carcinoma expressing c-kit protein: a Phase II clinical trial. Cancer 104:2033–2034; author reply 2034

    Article  PubMed  Google Scholar 

  76. Dy GK, Miller AA, Mandrekar SJ et al (2005) A phase II trial of imatinib (ST1571) in patients with c-kit expressing relapsed small-cell lung cancer: a CALGB and NCCTG study. Ann Oncol 16:1811–1816

    Article  PubMed  CAS  Google Scholar 

  77. Gross DJ, Munter G, Bitan M et al (2006) The role of imatinib mesylate (Glivec) for treatment of patients with malignant endocrine tumors positive for c-kit or PDGF-R. Endocr Relat Cancer 13: 535–540

    Article  PubMed  CAS  Google Scholar 

  78. Romer J, Nielsen BS, Ploug M (2004) The urokinase receptor as a potential target in cancer therapy. Curr Pharm Des 10:2359–2376

    Article  PubMed  CAS  Google Scholar 

  79. Liu H, Kho AT, Kohane IS, Sun Y (2006) Predicting survival within the lung cancer histopathological hierarchy using a multi-scale genomic model of development. PLoS Med 3:e232

    Article  PubMed  CAS  Google Scholar 

  80. Virchow R (1858) Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. Berlin

  81. Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R (1987) The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50:649–657

    Article  PubMed  CAS  Google Scholar 

  82. Wang Z, Shu W, Lu MM, Morrisey EE (2005) Wnt7b activates canonical signaling in epithelial and vascular smooth muscle cells through interactions with Fzd1, Fzd10, and LRP5. Mol Cell Biol 25:5022–5030

    Article  PubMed  CAS  Google Scholar 

  83. Lako M, Strachan T, Bullen P, Wilson DI, Robson SC, Lindsay S (1998) Isolation, characterisation and embryonic expression of WNT11, a gene which maps to 11q13.5 and has possible roles in the development of skeleton, kidney and lung. Gene 219:101–110

    Article  PubMed  CAS  Google Scholar 

  84. Li C, Xiao J, Hormi K, Borok Z, Minoo P (2002) Wnt5a participates in distal lung morphogenesis. Dev Biol 248:68–81

    Article  PubMed  CAS  Google Scholar 

  85. Shu W, Jiang YQ, Lu MM, Morrisey EE (2002) Wnt7b regulates mesenchymal proliferation and vascular development in the lung. Development 129:4831–4842

    PubMed  CAS  Google Scholar 

  86. Widelitz R (2005) Wnt signaling through canonical and non-canonical pathways: recent progress. Growth Factors 23:111–116

    Article  PubMed  CAS  Google Scholar 

  87. Akiyama T (2000) Wnt/beta-catenin signaling. Cytokine Growth Factor Rev 11:273–282

    Article  PubMed  CAS  Google Scholar 

  88. Veeman MT, Axelrod JD, Moon RT (2003) A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 5: 367–377

    Article  PubMed  CAS  Google Scholar 

  89. De Langhe SP, Sala FG, Del Moral PM et al (2005) Dickkopf-1 (DKK1) reveals that fibronectin is a major target of Wnt signaling in branching morphogenesis of the mouse embryonic lung. Dev Biol 277:316–331

    Article  PubMed  CAS  Google Scholar 

  90. You L, He B, Xu Z et al (2004) Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells. Oncogene 23:6170–6174

    Article  PubMed  CAS  Google Scholar 

  91. Kim J, You L, Xu Z et al (2007) Wnt inhibitory factor inhibits lung cancer cell growth. J Thorac Cardiovasc Surg 133:733–737

    Article  PubMed  CAS  Google Scholar 

  92. He B, Barg RN, You L et al (2005) Wnt signaling in stem cells and non-small-cell lung cancer. Clin Lung Cancer 7:54–60

    Article  PubMed  CAS  Google Scholar 

  93. Uematsu K, He B, You L, Xu Z, McCormick F, Jablons DM (2003) Activation of the Wnt pathway in non small cell lung cancer: evidence of dishevelled overexpression. Oncogene 22:7218–7221

    Article  PubMed  CAS  Google Scholar 

  94. Bettenhausen B, Hrabe de Angelis M, Simon D, Guenet JL, Gossler A (1995) Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta. Development 121:2407–2418

    PubMed  CAS  Google Scholar 

  95. Juopperi TA, Schuler W, Yuan X, Collector MI, Dang CV, Sharkis SJ (2007) Isolation of bone marrow-derived stem cells using density-gradient separation. Exp Hematol 35:335–341

    Article  PubMed  CAS  Google Scholar 

  96. Post LC, Ternet M, Hogan BL (2000) Notch/Delta expression in the developing mouse lung. Mech Dev 98:95–98

    Article  PubMed  CAS  Google Scholar 

  97. Chen H, Thiagalingam A, Chopra H et al (1997) Conservation of the Drosophila lateral inhibition pathway in human lung cancer: a hairy-related protein (HES-1) directly represses achaete-scute homolog-1 expression. Proc Natl Acad Sci U S A 94:5355–5360

    Article  PubMed  CAS  Google Scholar 

  98. Dang TP, Gazdar AF, Virmani AK et al (2000) Chromosome 19 translocation, overexpression of Notch3, and human lung cancer. J Natl Cancer Inst 92:1355–1357

    Article  PubMed  CAS  Google Scholar 

  99. Varjosalo M, Taipale J (2007) Hedgehog signaling. J Cell Sci 120:3–6

    Article  PubMed  CAS  Google Scholar 

  100. van Tuyl M, Post M (2000) From fruitflies to mammals: mechanisms of signalling via the Sonic hedgehog pathway in lung development. Respir Res 1:30–35

    Article  PubMed  Google Scholar 

  101. Bellusci S, Furuta Y, Rush MG, Henderson R, Winnier G, Hogan BL (1997) Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development 124:53–63

    PubMed  CAS  Google Scholar 

  102. Litingtung Y, Lei L, Westphal H, Chiang C (1998) Sonic hedgehog is essential to foregut development. Nat Genet 20:58–61

    Article  PubMed  CAS  Google Scholar 

  103. Reynolds SD, Hong KU, Giangreco A et al (2000) Conditional clara cell ablation reveals a self-renewing progenitor function of pulmonary neuroendocrine cells. Am J Physiol Lung Cell Mol Physiol 278:L1256–1263

    PubMed  CAS  Google Scholar 

  104. Cooper MK, Porter JA, Young KE, Beachy PA (1998) Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280:1603–1607

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Jablons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yagui-Beltrán, A., He, B. & Jablons, D.M. The role of cancer stem cells in neoplasia of the lung: past, present and future. Clin Transl Oncol 10, 719–725 (2008). https://doi.org/10.1007/s12094-008-0278-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-008-0278-6

Keywords

Navigation