Skip to main content
Log in

Strategies for Analysis of the Glycosylation of Proteins: Current Status and Future Perspectives

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

More than half of human proteins are glycosylated by a bewildering array of complex and heterogeneous N- and O-linked glycans. They function in myriad biological processes, including cell adhesion and signalling and influence the physical characteristics, stability, function, activity and immunogenicity of soluble glycoproteins. A single protein may be glycosylated differently to yield heterogenous glycoforms. Glycosylation analysis is of increasing interest in biomedical and biological research, the pharmaceutical and healthcare industry and biotechnology. This is because it is increasingly apparent that glycosylation changes in diseases, such as cancer, making it a promising target for development of clinically useful biomarkers and therapeutics. Furthermore, as the non-human cells employed in expression systems glycosylate their proteins very differently to human cells, and as glycosylation changes unpredictably under changing environmental conditions, glycans analysis for quality control, optimum efficacy and safety of recombinant glycoproteins destined for human therapeutic use is paramount. The complexities of carbohydrate chemistry make analysis challenging and while there are a variety of robust methodologies available for glycan analysis, there is currently a pressing need for the development of new, streamlined, high throughput approaches accessible to non-specialist laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rudd, P. M. (1993). Oligosaccharides in human biology. Glyco News, 3, 1–8.

    Google Scholar 

  2. Apweiler, R., Hermjakob, H., & Sharon, N. (1999). On the frequency of protein glycosylation as deduced from analysis of the SWISS-PROT database. Biochimica et Biophysica Acta, 1473, 4–8.

    CAS  Google Scholar 

  3. Hagglund, P., Bunkenborg, J., Elortza, F., Jensen, O. N., & Roepstorff, P. (2004). A new strategy for identification of I-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. Journal of Proteome Research, 3, 556–566.

    Article  CAS  Google Scholar 

  4. Kameyama, A., Nakaya, S., Ito, H., Kikuchi, N., Angata, T., Nakamura, M., et al. (2006). Strategy for simulation of CID spectra of N-linked oligosaccharides towards glycomics. Journal of Proteome Research, 5, 808–814.

    Article  CAS  Google Scholar 

  5. Dwek, R. A. (1996). Glycobiology: Toward the understanding of the function of sugars. Chemical Reviews, 96, 683–720.

    Article  CAS  Google Scholar 

  6. Delves, P. J. (1998). The role of glycosylation in autoimmune disease. Autoimmunity, 27, 239–253.

    Article  CAS  Google Scholar 

  7. Roseman, S. (2001). Reflections on glycobiology. Journal of Biological Chemistry, 276, 41527–44152.

    Article  CAS  Google Scholar 

  8. Haltiwanger, R. S., & Lowe, J. B. (2004). Role of glycosylation in development. Annual Review of Biochemistry, 73, 491–537.

    Article  CAS  Google Scholar 

  9. Rudd, P. M., Wormald, M. R., & Dwek, R. A. (2004). Sugar-mediated interactions in the immune system. Trends in Biotechnology, 22, 524–530.

    Article  CAS  Google Scholar 

  10. Ohtsubo, K., & Marth, J. D. (2006). Glycosylation in cellular mechanisms of health and disease. Cell, 126, 855–867.

    Article  CAS  Google Scholar 

  11. Brooks, S. A., Dwek, M. V., & Schumacher, U. (2002). Disease processes in which carbohydrates are involved, Chapter 16. In Functional and molecular glycobiology (pp. 287–312). Oxford: Bios Scientific Publishers, Ltd.

  12. Taylor, M. E., & Drickamer, K. (2006). Glycosylation and disease, Chapter 12. In Introduction to glycobiology (2nd ed., pp. 218–235). Oxford: Oxford University Press.

  13. Dennis, J. W. (1992). Oligosaccharides in carcinogenesis and metastasis. Glyco News, 2, 1–4.

    Google Scholar 

  14. Dall’Olio, F. (1996). Protein glycosylation in cancer biology: An overview. Journal of Clinical Pathology, 49, M126–M135.

    Article  Google Scholar 

  15. Fukuda, M. (1996). Possible roles of tumour associated carbohydrate antigens. Cancer Research, 56, 2237–2244.

    CAS  Google Scholar 

  16. Ho, S. B., & Kim, Y. S. (1997). Glycoproteins and glycosylation changes in cancer in Encyclopaedia of Cancer (Vol. II, pp. 744–759). London: Academic Press.

    Google Scholar 

  17. Kannagi, R. (1997). Carbohydrate-mediated cell adhesion involved in hematogenous metastasis of cancer. Glycoconjugate Journal, 14, 577–584.

    Article  CAS  Google Scholar 

  18. Kim, Y. J., & Varki, A. (1997). Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconjugate Journal, 14, 569–576.

    Article  CAS  Google Scholar 

  19. Price, J. T., Bonovich, M. T., & Kohn, E. C. (1997). The biochemistry of cancer dissemination. Critical Reviews in Biochemistry and Molecular Biology, 32, 175–253.

    Article  CAS  Google Scholar 

  20. Brooks, S. A. (2000). The involvement of Helix pomatia lectin (HPA) binding N-acetylgalactosamine glycans in cancer progression. Histology and Histopathology, 15, 143–158.

    CAS  Google Scholar 

  21. Dube, D. H., & Bertozzi, C. R. (2005). Glycans in cancer and inflammation–potential for therapeutics and diagnostics. Nature Reviews Drug Discovery, 4, 477–488.

    Article  CAS  Google Scholar 

  22. Rademacher, T. W., Parekh, R. B., & Dwek, R. A. (1998). Glycobiology. Annual Review of Biochemistry, 57, 785–838.

    Article  Google Scholar 

  23. Brooks, S. A., Dwek, M. V., & Schumacher, U. (2002). Carbohydrate biotechnology, Chapter 18. In Functional and molecular glycobiology (pp. 329–345). Oxford: Bios Scientific Publishers, Ltd.

  24. Brooks, S. A. (2004). Appropriate glycosylation of recombinant proteins for human use: Implications of choice of expression system. Molecular Biotechnology, 28, 241–256.

    Article  CAS  Google Scholar 

  25. Brooks, S. A. (2006). Protein glycosylation in diverse cell systems—implications for modification and analysis of recombinant proteins. Expert Review in Proteomics, 3, 345–359.

    Article  CAS  Google Scholar 

  26. Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Stanley, P., Bertozzi, P. R., et al. (1999). Saccharide structure and nomenclature, Chapter 2. In Essentials of glycobiology (pp. 17–30). New York: Cold Harbor Laboratory Press.

  27. Brooks, S. A., Dwek, M. V., & Schumacher, U. (2002). An introduction to carbohydrate chemistry, Chapter 1. In Functional and molecular glycobiology (pp. 1–30). Oxford: Bios Scientific Publishers, Ltd.

  28. Van den Eijnden, D. H., & Joziasse, D. H. (1993). Enzymes associated with glycosylation. Current Opinion in Structural Biology, 3, 711–721.

    Article  Google Scholar 

  29. Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Stanley, P., Bertozzi, P. R., et al. (1999). N-glycans, Chapter 7. In Essentials of glycobiology (pp. 85–100). New York: Cold Harbor Laboratory Press.

  30. Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Stanley, P., Bertozzi, P. R., et al. (1999). O-glycans, Chapter 8. In Essentials of glycobiology (pp. 101–114). New York: Cold Harbor Laboratory Press.

  31. Brooks, S. A., Dwek, M. V., & Schumacher, U. (2002). N-linked glycoproteins, Chapter 4. In Functional and molecular glycobiology (pp. 73–88). Oxford: Bios Scientific Publishers, Ltd.

  32. Brooks, S. A., Dwek, M. V., & Schumacher, U. (2002). O-linked (mucin-type) glycoproteins, Chapter 5. In Functional and molecular glycobiology (pp. 89–115). Oxford: Bios Scientific Publishers, Ltd.

  33. Brooks, S. A., Carter, T. M., Royle, L., Harvey, D. J., Fry, S. A., Kinch, C., et al. (2008). Altered glycosylation of proteins in cancer: What is the potential for new anti-tumour strategies? Anticancer Agents in Medicinal Chemistry, 8, 2–21.

    Article  CAS  Google Scholar 

  34. Harris, R. J., Leonard, C. K., Guzzetta, A. W., & Spellman, M. W. (1991). Tissue plasminogen activator has an O-linked fucose attached to threonine-61 in the epidermal growth factor domain. Biochemistry, 30, 2311–2314.

    Article  CAS  Google Scholar 

  35. Nishimura, H., Takao, T., Hase, S., Shimonishi, Y., & Iwanaga, S. (1992). Human factor IX has a tetrasaccharide O-glycosidically linked to Serine 61 through the fucose residue. Journal of Biological Chemistry, 267, 17520–17525.

    CAS  Google Scholar 

  36. Kieliszewski, M. J., O’Neill, M., Leykam, J., & Orlando, R. (1995). Tandem mass spectrometry and structural elucidation of glycopeptides from a hydroxyproline-rich plant cell wall glycoprotein indicate that contiguous hydroxyproline residues are the major sites of hydoxyproline O-arabinosylation. Journal of Biological Chemistry, 270, 2541–2549.

    Article  CAS  Google Scholar 

  37. Duman, J. G., Miele, R. G., Liang, H., Grella, D. K., Sim, K. L., Castellino, F. J., et al. (1998). O-mannosylation of Pichia pastoris cellular and recombinant proteins. Biotechnology and Applied Biochemistry, 28, 39–45.

    CAS  Google Scholar 

  38. Hanisch, F. -G. (2001). O-glycosylation of the mucin type. Biological Chemistry, 382, 143–149.

    Article  CAS  Google Scholar 

  39. Haltiwanger, R. S., Kelly, W. G., Roquemore, E. P., Blomberg, M. A., Dong, L. Y. D., Kreppel, L., et al. (1992). Glycosylation of nuclear and cytoplasmic proteins is ubiquitous and dynamic. Biochemical Society Transactions, 20, 264–269.

    CAS  Google Scholar 

  40. Hart, G. W. (1997). Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annual Review of Biochemistry, 66, 315–335.

    Article  CAS  Google Scholar 

  41. Brockhausen, I. (1995). Biosynthesis of O-glycans of the N-acetylgalactosamine-α-Ser/Thr linkage type, Chapter 5. In J. Montreuil, H. Schacter, & J. F. G. Vliegenthart (Eds.), Glycoproteins (pp. 201–259). Amsterdam: Elsevier Science BV.

    Chapter  Google Scholar 

  42. Dekker, J., Rossen, J. W. A., Buller, H. A., & Einerhand, A. W. C. (2002). Review: The MUC family—an obituary. Trends in Biochemical Sciences, 27, 126–131.

    Article  CAS  Google Scholar 

  43. Springer, G. F. (1997). Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. Journal of Molecular Medicine, 75, 594–602.

    Article  CAS  Google Scholar 

  44. Brooks, S. A., Dwek, M. V., & Schumacher, U. (2002). Glycan chain extension and some common and important glycan structures, Chapter 10. In Functional and molecular glycobiology (pp. 187–202). Oxford, UK: Bios Scientific Publishers, Ltd.

  45. Dwek, R. A., Edge, C. J., Harvey, D. J., Wormald, M. R., & Parekh, R. B. (1993). Analysis of glycoprotein-associated oligosaccharides. Annual Review of Biochemistry, 62, 65–100.

    Article  CAS  Google Scholar 

  46. Rudd, P. M., Guile, G. R., Kuster, B., Harvey, D. J., Opdenakker, G., & Dwek, R. A. (1997). Oligosaccharide sequencing technology. Nature, 388, 205–207.

    Article  CAS  Google Scholar 

  47. Rudd, P. M., & Dwek, R. A. (1997). Rapid, sensitive sequencing of oligosaccharides from glycoproteins. Current Opinion in Biotechnology, 8, 488–497.

    Article  CAS  Google Scholar 

  48. Anumula, K. R. (2000). High-sensitivity and high-resolution methods for glycoprotein analysis. Analytical Biochemistry, 283, 17–26.

    Article  CAS  Google Scholar 

  49. Wuhrer, M., Deelder, A. M., & Hokke, C. H. (2005). Protein glycosylation analysis by liquid chromatography—mass spectrometry. Journal of Chromatography B, 825, 124–133.

    Article  CAS  Google Scholar 

  50. Geyer, H., & Geyer, R. (2006). Strategies for analysis of glycosylation. Biochimica et Biophysica Acta—Proteins and Proteomics., 1764, 1853–1869.

    Article  CAS  Google Scholar 

  51. Mechref, Y., & Novotny, M. V. (2006). Miniturized separation techniques in glycomic investigations. Journal of Chromatography B, 841, 65–78.

    Article  CAS  Google Scholar 

  52. Pilobello, K. T., & Mahal, L. K. (2007). Deciphering the glycocode: The complexity and analytical challenge of glycomics. Current Opinion in Chemical Biology, 11, 300–305.

    Article  CAS  Google Scholar 

  53. Mamitsuka, H. (2007). Informatic innovations in glycobiology: Relevance to drug discovery. Drug Discovery Today, 13, 118–123.

    Article  CAS  Google Scholar 

  54. Raman, R., Raguram, S., Venkataraman, G., Paulson, J. C., & Sasisekharan, R. (2005). Glycomics: An integrated systems approach to structure-function relationships of glycans. Nature Methods, 2, 817–824.

    Article  CAS  Google Scholar 

  55. Rudiger, H., & Gabius, H. J. (2001). Plant lectins: Occurrence, biochemistry, functions and applications. Glycoconjugate Journal, 18, 589–613.

    Article  CAS  Google Scholar 

  56. Sharon, N., & Lis, H. (2004). History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology, 14, 53–62.

    Article  CAS  Google Scholar 

  57. Schumacher, U., Brooks, S. A., & Leathem, A. J. (1991). Lectins as tools in histochemical techniques: A review of methodological aspects. In D. C. Kilpatrick, E. Van Driessche, & T. C. Bog-Hansen (Eds.), Lectin reviews (Vol. 1, pp. 195–201). St Louis, MO, USA: Sigma Chemical Company.

    Google Scholar 

  58. Brooks, S. A., Leathem, A. J. C., & Schumacher, U. (1997). Lectin histochemistry—a concise practical handbook. Oxford, UK: Bios Scientific Publishers.

    Google Scholar 

  59. Brooks, S. A., & Hall, D. M. S. (2001). Lectin histochemistry to detect altered glycosylation in cells and tissues. In S. A. Brooks & U. Schumacher (Eds.), Metastasis research protocols, vol I: Analysis of cells and tissues (pp. 49–66). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  60. Carter, T. M., & Brooks, S. A. (2006). Detection of aberrant glycosylation in breast cancer using lectin histochemistry. In S. A. Brooks & A. Harris (Eds.), Breast Cancer Research Protocols (pp. 201–216). Totowa, NJ: Humana Press.

    Google Scholar 

  61. Khan, S., Brooks, S. A., & Leathem, A. J. C. (1994). GalNAc-type glycoproteins in breast cancer—a 26 lectin study. Journal of Pathology, 172(Suppl), 134A.

    Google Scholar 

  62. Brooks, S. A., Khan, S., & Leathem, A. J. C. (1994). Lectins—exquisitely selective probes for complex sugars. Histochemical Journal, 26, 602.

    Google Scholar 

  63. Brooks, S. A., & Leathem, A. J. C. (1991). Prediction of lymph node involvement in breast cancer by detection of altered glycosylation in the primary tumour. The Lancet, 338, 71–74.

    Article  CAS  Google Scholar 

  64. Hirabayshi, J. (2004). Lectin-based structural glycomics: Glycoproteomics and glycan profiling. Glycoconjugate Journal, 21, 35–40.

    Article  Google Scholar 

  65. Hsu, K. L., & Mahal, L. K. (2006). A lectin microarray approach for the rapid analysis of bacterial glycans. Nature Protocols, 1, 543–549.

    Article  CAS  Google Scholar 

  66. Hsu, K. L., Pilobello, K. T., & Mahal, L. K. (2006). Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nature Chemical Biology, 2, 153–157.

    Article  CAS  Google Scholar 

  67. Pilobello, K. T., Slawek, D. E., & Mahal, L. K. (2007). A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome. Proceedings of the National Academy of Sciences of the United States of America, 104, 11534–11539.

    Article  CAS  Google Scholar 

  68. Manimala, J. C., Li, Z. T., Jain, A., VedBrat, S., & Gildersleeve, J. C. (2005). Carbohydrate array analysis of anti-Tn antibodies and lectins reveals unexpected specificities: Implications for diagnostic and vaccine development. ChemBioChem, 6, 2229–2241.

    Article  CAS  Google Scholar 

  69. Vocadio, D. J., Hang, H. C., Kim, E. J., Hanover, J. A., & Bertozzi, C. R. (2004). A chemical approach for identifying O-GlcNAc modified proteins in cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 9116–9121.

    Article  CAS  Google Scholar 

  70. Saxon, E., & Bertozzi, C. R. (2000). Cell surface engineering by a modified Staudinger reaction. Science, 287, 2007–2010.

    Article  CAS  Google Scholar 

  71. Hang, H. C., Yu, C., Kato, D. L., & Bertozzi, C. R. (2003). A metabolic labelling approach toward proteomic analysis of mucin type O-linked glycosylation. Proceedings of the National Academy of Sciences of the United States of America, 100, 14846–14851.

    Article  CAS  Google Scholar 

  72. Prescher, J. A., Dube, D. H., & Bertozzi, C. R. (2004). Chemical remodelling of cell surfaces in living animals. Nature, 430, 873–877.

    Article  CAS  Google Scholar 

  73. Dube, D. H., Prescher, J. A., Quang, C. N., & Bertozzi, C. R. (2006). Probing mucin-type O-linked glycosylation in living animals. Proceedings of the National Academy of Sciences of the United States of America, 103, 4819–4824.

    Article  CAS  Google Scholar 

  74. Brooks, S. A., Hall, D. M. S., & Buley, I. (2001). GalNAc glycoprotein expression by breast cell lines, primary breast cancer and normal breast epithelial membrane. British Journal of Cancer, 85, 1014–1022.

    Article  CAS  Google Scholar 

  75. Patton W. F. (2002). Fluorescence detection of glycoproteins in gels and on electroblots. In Current protocols in cell biology, Chapter 6, Unit 6.8.

  76. Osborne, C., & Brooks, S. A. (2006). SDS-PAGE and western blotting to detect proteins and glycoproteins of interest in breast cancer research. In S. A. Brooks & A. Harris (Eds.), Breast Cancer Research Protocols (pp. 217–230). Totowa, NJ: Humana Press.

    Google Scholar 

  77. Wilson, N. L., Schulz, B. L., Karlsson, N. G., & Packer, N. H. (2002). Sequential analysis of N- and O-linked glycosylation of 2D-PAGE separated glycoproteins. Journal of Proteome Research, 1, 521–529.

    Article  CAS  Google Scholar 

  78. Dwek, M. V., & Rawlings, S. L. (2002). Current perspectives in cancer proteomics. Molecular Biotechnology, 22, 139–152.

    Article  CAS  Google Scholar 

  79. Dwek, M. V., & Rawlings, S. L. (2006). Breast cancer proteomics using two-dimensional electrophoresis: Studying the breast cancer proteome. In S. A. Brooks & A. Harris (Eds.), Breast Cancer Research Protocols (pp. 231–244). Totowa, NJ: Humana Press.

    Google Scholar 

  80. Dwek, M. V., & Alaiya, A. A. (2003). Proteome analysis enables separate clustering of normal breast, benign breast and breast cancer tissues. Breast Journal of Cancer, 89, 305–307.

    CAS  Google Scholar 

  81. Block, T. M., Comunale, M. A., Lowman, M., Steel, L. F., Romano, P. R., Fimmel, C., et al. (2005). Use of targeted glycoproteomics to identify serum glycoproteins that correlate with liver cancer in woodchucks and humans. Proceedings of the National Academy of Sciences of the United States of America, 102, 779–784.

    Article  CAS  Google Scholar 

  82. Rudd, P. M., Colominas, C., Royle, L., Murphy, N., Hart, E., Merry, A. H., et al. (2001). A high-performance liquid chromatography based strategy for rapid, sensitive sequencing of N-linked oligosaccharide modifications to proteins in sodium dodecyl sulphate polyacrylamide electrophoresis gel bands. Proteomics, 1, 285–294.

    Article  CAS  Google Scholar 

  83. Manzi A. E. (2001). Total compositional analysis by high-performance liquid chromatography or gas-liquid chromatography. In Current protocols in molecular biology, Chapter 17, Unit17, 19A.

  84. Patel, T. P., & Parekh, R. B. (1994). Release of oligosaccharides from glycoproteins by hydrazinolysis. Methods in Enzymology, 230, 57–66.

    Article  CAS  Google Scholar 

  85. Morelle, W., & Strecker, G. (1998). Structural analysis of a new series of oligosaccharide-alditols released by reductive beta-elimination from oviducal mucins of Rana utricularia. Biochemical Journal, 330, 469–478.

    CAS  Google Scholar 

  86. Huang, Y., Mechref, Y., & Novotny, M. V. (2001). Microscale non-reductive release of O-linked glycans for subsequent analysis through MALDI mass spectrometry and capillary electrophoresis. Analytical Chemistry, 73, 6063–6069.

    Article  CAS  Google Scholar 

  87. Hong, J. C., & Kim, Y. S. (2000). Alkali-catalyzed beta-elimination of periodate-oxidised glycans: A novel method of chemical deglycosylation of mucin gene products in paraffin embedded sections. Glycoconjugate Journal, 17, 691–703.

    Article  CAS  Google Scholar 

  88. Hanisch, F. G., Teitz, S., Schwientek, T., & Mueller, S. (2009). Chemical de-O-glycosylation of glycoproteins for application in LC-based proteomics. Proteomics, 9, 710–719.

    Article  CAS  Google Scholar 

  89. Kuster, B., Hunter, A. P., Wheeler, S. F., Dwek, R. A., & Harvey, D. J. (1998). Structural determination of N-linked carbohydrates by matrix-assisted laser desorption/ionization-mass spectrometry following enzymatic release within sodium dodecyl sulphate-polyacrylamide electrophoresis gels: Application to species-specific glycosylation of alpha1-acid glycoprotein. Electrophoresis, 19, 1950–1959.

    Article  CAS  Google Scholar 

  90. Freeze, H. H., & Varki, A. (1986). Endo-glycosidase F and peptide N-glycosidase F release the great majority of total cellular N-linked oligosaccharides: Use in demonstrating that sulfated N-linked oligosaccharides are frequently found in cultured cells. Biochemical and Biophysical Research Communications, 140, 967–973.

    Article  CAS  Google Scholar 

  91. Cataldi, T. R., Campa, C., & De Benedetto, G. E. (2000). Carbohydrate analysis by high-performance anion-exchange chromatography with pulsed amperometric detection: The potential is still growing. Fresenius Journal of Analytical Chemistry, 368, 739–758.

    Article  CAS  Google Scholar 

  92. Rohrer, J. S. (2000). Analyzing sialic acids using high-performance anion-exchange chromatography with pulsed amperometric detection. Analytical Biochemistry, 283, 3–9.

    Article  CAS  Google Scholar 

  93. Bigge, J. C., Patel, T. P., Bruce, J. A., Goulding, P. N., Charles, S. M., & Parekh, R. B. (1995). Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Analytical Biochemistry, 230, 229–238.

    Article  CAS  Google Scholar 

  94. Zhuang, Z., Starkey, J. A., Mechref, Y., Novotny, M. V., & Jacobson, S. C. (2007). Electrophoretic analysis of N-glycans on microfluidic devices. Analytical Chemistry, 79, 7170–7175.

    Article  CAS  Google Scholar 

  95. Anumula, K. R. (2008). Unique anthranilic acid chemistry facilitates profiling and characterization of Ser/Thr-linked sugar chains following hydrazinolysis. Analytical Biochemistry, 373, 104–111.

    Article  CAS  Google Scholar 

  96. Xia, B., Kawar, Z. S., Ju, T. Z., Alvarez, R. A., Sachdev, G. P., & Cummings, R. D. (2005). Versatile fluorescent derivatization of glycans for glycomic analysis. Nature Methods, 2, 845–850.

    Article  CAS  Google Scholar 

  97. Royle, L., Campbell, M. P., Radcliffe, C. M., White, D. M., Harvey, D. J., Abrahams, J. L., et al. (2008). HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Analytical Biochemistry, 376, 1–12.

    Article  CAS  Google Scholar 

  98. Guile, G. R., Wong, S. Y. C., & Dwek, R. A. (1994). Analytical and preparative separation of anionic oligosaccharides by weak anion exchange high performance liquid chromatography on an inert polymer column. Analytical Biochemistry, 222, 231–235.

    Article  CAS  Google Scholar 

  99. Lee, Y. C. (1996). Review: Carbohydrate analyses with high performance anion-exchange chromatography. Journal of Chromatography A, 720, 137–149.

    Article  CAS  Google Scholar 

  100. Nakano, M., Kakehi, K., & Lee, Y. C. (2003). Sample clean-up method for analysis of complex N-glycans released from glycopeptides. Journal of Chromatography A, 1005, 13–21.

    Article  CAS  Google Scholar 

  101. Jackson, P. (1991). Polyacrylamide gel electrophoresis of reducing saccharides labelled with the fluorophore 2-aminoacridone: Subpicomolar detection using an imaging system based on a cooled charge-coupled device. Analytical Biochemistry, 196, 238–244.

    Article  CAS  Google Scholar 

  102. Nakajima, K., Oda, Y., Kinoshita, M., & Kakehi, K. (2003). Capillary affinity electrophoresis for the screening of post-translational modification of protein with carbohydrates. Journal of Proteome Research, 2, 81–88.

    Article  CAS  Google Scholar 

  103. Park, Y., & Lebrilla, C. B. (2005). Application of Fourier transform ion cyclotron resonance mass spectrometry to oligosaccharides. Mass Spectrometry Reviews, 24, 232–264.

    Article  CAS  Google Scholar 

  104. Lohmann, K. K., & von der Leith, C. W. (2004). GlycoFragment and GlycoSearchMS: Web tools to support the interpretation of mass spectra of complex carbohydrates. Nucleic Acids Research, 32, W261–W266.

    Article  CAS  Google Scholar 

  105. Goldberg, D., Bern, M., Li, B. S., & Lebrilla, C. B. (2005). Automatic determination of O-glycan structure from fragmentation spectra. Journal of Proteome Research, 5, 1429–1434.

    Article  CAS  Google Scholar 

  106. von der Leith, C. W., Lutteke, T., & Frank, M. (2006). The role of informatics in glycobiology research with special emphasis on automatic interpretation of MS spectra. Biochimica et Biophysica Acta, 1760, 568–577.

    Google Scholar 

  107. Budnik, B. A., Lee, R. S., & Steen, J. A. J. (2006). Global methods for protein glycosylation analysis by mass spectrometry. Biochimica et Biophysica Acta—Proteins and Proteomics, 1764, 1870–1880.

    Article  CAS  Google Scholar 

  108. Jang-Jee, J., North, S. J., Sutton-Smith, M., Goldberg, D., Panico, M., Morris, H., et al. (2006). Glycomic profiling of cells and tissues by mass spectrometry: Fingerprinting and sequencing methodologies. Methods in Enzymology, 415, 59–86.

    Article  CAS  Google Scholar 

  109. Morelle, W., & Michalski, J. C. (2005). Glycomics and mass spectrometry. Current Pharmaceutical Design, 11, 2615–2645.

    Article  CAS  Google Scholar 

  110. Morelle, W., & Michalski, J. C. (2007). Analysis of protein glycosylation by mass spectrometry. Nature Protocols, 2, 1585–1602.

    Article  CAS  Google Scholar 

  111. Lohse, A., Martins, R., Jorgensen, M. R., & Hindgaul, O. (2006). Solid phase oligosaccharide tagging (SPOT): Validation on glycolipid-derived structures. Angewandte Chemie (International ed. in English), 45, 4167–4172.

    Article  CAS  Google Scholar 

  112. Shimaoka, H., Kuramoto, H., Furukawa, J., Miura, Y., Kurogochi, M., Kita, Y., et al. (2007). One-pot solid-phase glycoblotting and probing by transoximization for high-throughput glycomics and glycoproteomics. Chemistry, 13, 1664–1673.

    Article  CAS  Google Scholar 

  113. Uematsu, R., Furukawa, J., Nakagawa, H., Shinohara, Y., Deguchi, K., Monde, K., et al. (2005). High throughput quantitative glycomics and glycoform-focused proteomics of murine dermis and epidermis. Molecular & Cellular Proteomics, 4, 1977–1989.

    Article  CAS  Google Scholar 

  114. Karas, M., & Hillenkamp, F. (1988). Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical Chemistry, 60, 2299–2301.

    Article  CAS  Google Scholar 

  115. Wada, Y., Gu, J. G., Okamoto, N., & Inui, K. (1994). Diagnosis of carbohydrate-deficient glycoprotein syndrome by matrix-assisted laser desorption time-of-flight mass spectrometry. Biological Mass Spectrometry, 23, 108–109.

    Article  CAS  Google Scholar 

  116. Fenn, J. B., Mann, M., Meng, C. K., & Whitehouse, C. M. (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science, 246, 64–71.

    Article  CAS  Google Scholar 

  117. Harvey, D. J. (1999). Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrometry Reviews, 18, 349–450.

    Article  CAS  Google Scholar 

  118. Dell, A., & Morris, H. R. (2001). Glycoprotein structure determination by mass spectrometry. Science, 291, 2351–2356.

    Article  CAS  Google Scholar 

  119. Harvey, D. J., Royle, L., Radcliffe, C. M., Rudd, P. M., & Dwek, R. A. (2008). Structural and quantitative analysis of N-linked glycans by matrix-assisted laser desorption ionization and negative ion nanospray mass spectrometry. Analytical Biochemistry, 376, 44–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan A. Brooks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brooks, S.A. Strategies for Analysis of the Glycosylation of Proteins: Current Status and Future Perspectives. Mol Biotechnol 43, 76–88 (2009). https://doi.org/10.1007/s12033-009-9184-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9184-6

Keywords

Navigation