Skip to main content
Log in

Agrobacterium-Mediated Transformation and Insertional Mutagenesis in Colletotrichum acutatum for Investigating Varied Pathogenicity Lifestyles

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Colletotrichum acutatum is a cosmopolitan pathogen causing economically important diseases known as anthracnose on a wide range of hosts. This fungus exhibits varied pathogenicity lifestyles and the tools essential to understand the molecular mechanisms are still being developed. The transformation methods currently available for this species for gene discovery and functional analysis involve protoplast transformation and are laborious and inefficient. We have developed a protocol for efficient Agrobacterium tumefaciens-mediated transformation (ATMT) of C. acutatum. Using this protocol we were able to transform C. acutatum isolates belonging to different genetic groups and originating from different hosts. The transformation efficiency was up to 156 transformants per 104 conidia, with >70% transformants showing single location/single copy integration of T-DNA. Binary vector pBHt2-GFP was constructed, enabling green fluorescence protein tagging of C. acutatum strains, which will be a useful tool for epidemiology and histopathology studies. The ATMT protocol developed was used to identify putative pathogenicity mutants, suggesting the applicability of this technique for rapid generation of a large panel of insertional mutants of C. acutatum leading to the identification of the genes associated with the varied lifestyles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sreenivasaprasad, S., & Talhinhas, P. (2005). Genotypic and phenotypic diversity in Colletotrichum acutatum, a cosmopolitan pathogen causing anthracnose on a wide range of hosts. Molecular Plant Pathology, 6, 361–378.

    Article  CAS  Google Scholar 

  2. Wharton, P. S., & Schilder, A. C. (2007). Novel infection strategies of Colletotrichum acutatum on ripe blueberry fruit. Plant Pathology Doi:10.1111/j.365-3059.2007.01698.x

  3. Wharton, P. S., & Diéguez-Uribeondo, J. (2004). The biology of Colletotrichum acutatum. Anales del Jardín Botánico de Madrid, 61, 3–22.

    Google Scholar 

  4. Horowitz, S., Freeman, S., & Sharon, A. (2002). Use of green fluorescent protein-transgenic strains to study pathogenic and nonpathogenic lifestyles in Colletotrichum acutatum. Phytopathology, 92, 743–749.

    Article  PubMed  Google Scholar 

  5. Chung, K. R., Shilts, T., Li, W., & Timmer, L. W. (2002). Engineering a genetic transformation system for Colletotrichum acutatum, the causal fungus of lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiology Letters, 213, 33–39.

    Article  PubMed  CAS  Google Scholar 

  6. Gelvin, S. B. (2003). Agrobacterium-mediated plant transformation: The biology behind the “gene-jockeying” tool. Microbiology and Molecular Biology Reviews, 67, 16–37.

    Article  PubMed  CAS  Google Scholar 

  7. McCullen, C. A., & Binns, A. N. (2006). Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annual Review of Cell and Developmental Biology, 22, 101–127.

    Article  PubMed  CAS  Google Scholar 

  8. Citovsky, V., Kozlovsky, S. V., Lacroix, B., Zaltsman, A., Dafny-Yelin, M., Vyas, S., Tovkach, A., & Tzfira, T. (2007). Biological systems of the host cell involved in Agrobacterium infection. Cellular Microbiology, 9, 9–20.

    Article  PubMed  CAS  Google Scholar 

  9. Bundock, P., den Dulk-Ras, A., Beijersbergen, A., & Hooykaas, P. J. J. (1995). Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. The EMBO Journal, 14, 3206–3214.

    PubMed  CAS  Google Scholar 

  10. de Groot, M. J. A., Bundock, P., Hooykaas, P. J. J., & Beijersbergen, A. G. M. (1998). Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature Biotechnology, 16, 839–842.

    Article  PubMed  Google Scholar 

  11. Amey, R. C., Athey-Pollard, A., Burns, C., Mills, P. R., Bailey, A., & Foster, G. D. (2002). PEG-mediated and Agrobacterium-mediated transformation in the mycopathogen Verticillium fungicola. Mycological Research, 106, 4–11.

    Article  Google Scholar 

  12. Michielse, C. B., Hooykaas, P. J. J., van den Hondel, C. A. M. J. J., & Ram, A. F .J. (2005). Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Current Genetics, 48, 1–17.

    Article  PubMed  CAS  Google Scholar 

  13. Lacroix, B., Tzfira, T., Vainstein, A., & Citovsky, V. (2006). A case of promiscuity: Agrobacterium’s endless hunt for new partners. Trends in Genetics, 22, 29–37.

    Article  PubMed  CAS  Google Scholar 

  14. Eckert, M., Maguire, K., Urban, M., Foster, S., Fitt, B., Lucas, J., & Hammond-Kosack, K. (2005). Agrobacterium tumefaciens-mediated transformation of Leptosphaeria spp. and Oeulimacula spp. with the reef coral gene DsRed and the jellyfish gene gfp. FEMS Microbiology Letters, 253, 67–74.

    Article  PubMed  CAS  Google Scholar 

  15. Müller, T., Benjdia, M., Avolio, M., Voigt, B., Menzel, D., Pardo, A., Frommer, W. B., Wipf, D. (2006). Functional expression of the green fluorescent protein in the ectomycorrhizal model fungus Hebeloma cylindrosporum. Mycorrhiza, 16, 437–442.

    Article  PubMed  CAS  Google Scholar 

  16. Zeilinger, S. (2004). Gene disruption in Trichoderma atroviride via Agrobacterium-mediated transformation. Current Genetics, 45, 54–60.

    Article  PubMed  CAS  Google Scholar 

  17. Sugui, J. A., Chang, Y. C., & Kwon-Chung, K. J. (2005). Agrobacterium tumefaciens-mediated transformation of Aspergillus fumigatus: An efficient tool for insertional mutagenesis and targeted gene disruption. Applied and Environmental Microbiology, 71, 1798–1802.

    Article  PubMed  CAS  Google Scholar 

  18. Lee, M. H., & Bostock, R. M. (2006). Agrobacterium T-DNA-mediated integration and gene replacement in the brown rot pathogen Monilinia fructicola. Current Genetics, 49, 309–322.

    Article  PubMed  CAS  Google Scholar 

  19. Tsuji, G., Fujii, S., Fujihara, N., Hirose, C., Tsuge, S., Shiraishi, T., & Kubo, Y. (2003). Agrobacterium tumefaciens-mediated transformation for random insertional mutagenesis in Colletotrichum lagenarium. Journal of General Plant Pathology, 69, 230–239.

    Article  CAS  Google Scholar 

  20. Rogers, C. W., Challen, M. P., Green, J. R., & Whipps, J. M. (2004). Use of REMI and Agrobacterium-mediated transformation to identify pathogenicity mutants of the biocontrol fungus, Coniothyrium minitans. FEMS Microbiology Letters, 241, 207–214.

    Article  PubMed  CAS  Google Scholar 

  21. Sreenivasaprasad, S., Mills, P. R., Meehan, B. M., & Brown, A. E. (1996). Phylogeny and systematics of 18 Colletotrichum species based on ribosomal DNA spacer sequences. Genome, 39, 499–512.

    Article  PubMed  CAS  Google Scholar 

  22. Talhinhas, P., Sreenivasaprasad, S., Neves-Martins, J., & Oliveira, H. (2002). Genetic and morphological characterisation of Colletotrichum acutatum causing anthracnose of lupins. Phytopathology, 92, 986–996.

    Article  PubMed  Google Scholar 

  23. Talhinhas, P., Sreenivasaprasad, S., Neves-Martins, J., & Oliveira, H. (2005). Molecular and phenotypic analyses reveal the association of diverse Colletotrichum acutatum groups and a low level of C. gloeosporioides with olive anthracnose. Applied and Environmental Microbiology, 71, 2987–2998.

    Article  PubMed  CAS  Google Scholar 

  24. Mullins, E. D., & Kang, S. (2001). Transformation: A tool for studying fungal pathogens of plants. Cellular and Molecular Life Sciences, 58, 2043–2052.

    Article  PubMed  CAS  Google Scholar 

  25. Soares, A. X. (2004). Verticillium dahliae: Analysis of colonisation of strawberry cultivars (Fragaria × ananassa) & development of a transformation tool for genetic manipulation, PhD Thesis, Imperial College, University of London, United Kingdom.

  26. Mullins, E. D., Chen, X., Romaine, P., Raina, R., Geiser, D. M., & Kang, S. (2001). Agrobacterium-mediated transformation of Fusarium oxysporum: An efficient tool for insertional mutagenesis and gene transfer. Phytopathology, 91, 173–190.

    Article  CAS  PubMed  Google Scholar 

  27. Hooykaas, P. J. J., Roobol, C., & Schilperoort, R. A. (1979). Regulation of the transfer of Ti-plasmids of Agrobacterium tumefaciens. Journal of General Microbiology, 110, 99–109.

    CAS  Google Scholar 

  28. Reis, M. C., Fungaro, M. H. P., Duarte, R. T. D., Furlaneto, L., & Furlaneto, M. C. (2004). Agrobacterium tumefaciens-mediated genetic transformation of the entomopathogenic fungus Beauveria bassiana. Journal of Microbiological Methods, 58, 197–202.

    Article  PubMed  CAS  Google Scholar 

  29. Flowers, J. L., & Vaillancourt, L. J. (2005). Parameters affecting the efficiency of Agrobacterium tumefaciens-mediated transformation of Colletotrichum graminicola. Current Genetics, 48, 380–388.

    Article  PubMed  CAS  Google Scholar 

  30. Gregory, K. E. (2001). Transformation and transgene expression in homobasidiomycete mushrooms, PhD Thesis, Cranfield University, United Kingdom.

  31. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed). New York: Cold Spring Harbour Laboratory Press.

    Google Scholar 

  32. Burns, C., Leach, K. M., Elliott, T. J., Challen, M. P., Foster, G. D., & Bailey, A. (2006). Evaluation of Agrobacterium-mediated transformation of Agaricus bisporus using a range of promoters linked to hygromycin resistance. Molecular Biotechnology, 32, 129–138.

    Article  PubMed  CAS  Google Scholar 

  33. Khang, C. H., Park, S.-Y., Lee, Y.-H., & Kang, S. (2005). A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum. Fungal Genetics and Biology, 42, 483–492.

    Article  PubMed  CAS  Google Scholar 

  34. Weld, R. J., Eady, C. C., & Ridgway, H. J. (2006). Agrobacterium-mediated transformation of Sclerotinia sclerotiorum. Journal of Microbiological Methods, 65, 202–207.

    Article  PubMed  CAS  Google Scholar 

  35. Betts, M. F., Tucker, S. L., Galadima, N., Meng, Y., Patel, G., Li, L., Donofrio, N., Floyd, A., Nolin, S., Brown, D., Mandel, M. A., Mitchell, T. K., Xu, J.-R., Dean, R. A., Farman, M. L., & Orbach, M. J. (2007). Development of a high throughput transformation system for insertional mutagenesis in Magnaporthe oryzae. Fungal Genetics and Biology, 44, 1035–1049.

    Article  PubMed  CAS  Google Scholar 

  36. Takahara, H., Tsuji, G., Kubo, Y., Yamamoto, M., Toyoda, K., Inagaki, Y., Ichinose, Y., & Shiraishi, T. (2004). Agrobacterium tumefaciens-mediated transformation as a tool for random mutagenesis of Colletotrichum trifolii. Journal of General Plant Pathology, 70, 93–96.

    Article  CAS  Google Scholar 

  37. Rho, H. S., Kang, S., & Lee, Y. H. (2001). Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Molecules and Cells, 12, 407–411.

    PubMed  CAS  Google Scholar 

  38. Combier, J. P., Melayah, D., Raffier, C., Gay, G., & Marmeisse, R. (2003). Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. FEMS Microbiology Letters, 220, 141–148.

    Article  PubMed  CAS  Google Scholar 

  39. Peres, N. A., Timmer, L. W., Adaskaveg, J. E., & Correll, J. C. (2005). Lifestyles of Colletotrichum acutatum. Plant Disease, 89, 784–796.

    Article  Google Scholar 

  40. O’Connell, R., Herbert, C., Sreenivasaprasad, S., Khatib, M., Esquerré-Tugayé, M. T., & Dumas, B. (2004). A novel Arabidopsis-Colletotrichum pathosystem for the molecular dissection of plant–fungal interactions. Molecular Plant-Microbe Interactions, 17, 272–282.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly funded by FCT POCI 2010-FEDER (POCI/AGR/56321/2004 and SFRH/BPD/7161/2001, Portugal) and BBSRC (UK). The authors thank Dr. S. Kang (Pennsylvania State University, USA) for the pBHt2 plasmid and Dr. M. P. Challen, Dr. A. Soares and Ms. V. Odon (Warwick HRI) for providing bacterial strains, plasmids and protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Talhinhas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talhinhas, P., Muthumeenakshi, S., Neves-Martins, J. et al. Agrobacterium-Mediated Transformation and Insertional Mutagenesis in Colletotrichum acutatum for Investigating Varied Pathogenicity Lifestyles. Mol Biotechnol 39, 57–67 (2008). https://doi.org/10.1007/s12033-007-9028-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-007-9028-1

Keywords

Navigation