Skip to main content

Advertisement

Log in

Hepatitis B Virus-Associated Hepatocellular Carcinoma from India: Role of Viral Genotype and Mutations in CTNNB1 (Beta-Catenin) and TP53 Genes

  • Original Article
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Purpose

Chronic hepatitis B virus (HBV) infection is the major risk factor for hepatocellular carcinoma (HCC) in India. Studies from other countries have linked HBV genotype C to a higher risk for HCC. This study was carried out to determine the association between genotype and HCC and also the frequency of mutations in CTNNB1 (beta-catenin) and TP53 genes in HBV-related HCC.

Methods

Formalin-fixed paraffin-embedded (FFPE) tissues from 20 (15 autopsy, five resected specimens) cases of HBV-associated HCC were examined. Viral genotype was determined by sequencing portions of the HBV S gene using four overlapping PCR amplicons. Exon 3 of CTNNB1 and exon 7 of TP53 were sequenced.

Results

HBV genotyping was possible in 14 of 20 cases; genotype D was most common (n = 11) followed by C (n = 2) and A (n = 1). CTNNB1 mutations were noted in two of 15 amplifiable cases while two of 10 specimens showed TP53 mutations.

Conclusions

HBV genotype can be ascertained from FFPE sections by sequencing multiple overlapping fragments to avoid the limitation of fragmented DNA. Genotype D was the common genotype in HBV-associated HCC. The very low frequency of TP53 mutation suggests low levels of aflatoxin B1 exposure. The beta-catenin pathway appears not to be significantly involved in HBV-related HCC in India. However, further larger studies are required to confirm these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kao JH, Chen DS. Global control of hepatitis B virus infection. Lancet Infect. 2002;2:395–403.

    Article  Google Scholar 

  2. Pan CQ, Zhang JX. Natural history and clinical consequences of hepatitis B virus infection. Int J Med Sci. 2005;2:36–40.

    PubMed  Google Scholar 

  3. Kao JH, Chen PJ, Lai MY, Chen DS. Hepatitis B genotypes correlate with clinical outcomes in patients with chronic hepatitis B. Gastroenterology. 2000;118:554–9.

    Article  CAS  PubMed  Google Scholar 

  4. Chan HL, Hui AY, Wong ML, et al. Genotype C hepatitis B virus infection is associated with an increased risk of hepatocellular carcinoma. Gut. 2004;53:1494–8.

    Article  PubMed  Google Scholar 

  5. Yu MW, Yeh SH, Chen P, et al. Hepatitis B virus genotype and DNA level and hepatocellular carcinoma: a prospective study in men. J Natl Cancer Inst. 2005;97:265–72.

    Article  CAS  PubMed  Google Scholar 

  6. Yang HI, Yeh SH, Chen PJ, et al. Associations between hepatitis B virus genotype and mutants and the risk of hepatocellular carcinoma. J Natl Cancer Inst. 2008;100:1134–43.

    Article  CAS  PubMed  Google Scholar 

  7. Datta S. An overview of molecular epidemiology of hepatitis B virus (HBV) in India. Virol J. 2008;5:156.

    Article  PubMed  Google Scholar 

  8. Mohandas KM. Hepatitis B associated hepatocellular carcinoma: epidemiology, diagnosis and treatment. Hep B Annual. 2004;1:140–52.

    Google Scholar 

  9. Vivekanandan P, Abraham P, Sridharan G, et al. Distribution of hepatitis B virus genotypes in blood donors and chronically infected patients in a tertiary care hospital in southern India. Clin Infect Dis. 2004;38:81–6.

    Article  Google Scholar 

  10. Laurent-Puig P, Legoix P, Bluteau O, et al. Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology. 2001;120:1763–73.

    Article  CAS  PubMed  Google Scholar 

  11. Calvisi DF, Factor VM, Ladu S, Conner EA, Thorgeirsson SS. Disruption of beta-catenin pathway or genomic instability define two distinct categories of liver cancer in transgenic mice. Gastroenterology. 2004;126:1374–86.

    Article  CAS  PubMed  Google Scholar 

  12. Nishida N, Nishimura T, Nagasaka T, Ikai I, Goel A, Boland CR. Extensive methylation is associated with beta-catenin mutations in hepatocellular carcinoma: evidence for two distinct pathways of human hepatocarcinogenesis. Cancer Res. 2007;67:4586–94.

    Article  CAS  PubMed  Google Scholar 

  13. Wong CM, Fan ST, Ng IO. Beta-catenin mutation and over expression in hepatocellular carcinoma: clinicopathologic and prognostic significance. Cancer. 2001;92(1):136–45.

    Article  CAS  PubMed  Google Scholar 

  14. Hsu HC, Jeng YM, Mao TL, Chu JS, Lai PL, Peng SY. Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol. 2000;157(3):763–70.

    Article  CAS  PubMed  Google Scholar 

  15. Tanaka S, Toh Y, Adachi E, Matsumata T, Mori R, Sugimachi K. Tumor progression in hepatocellular carcinoma may be mediated by p53 mutation. Cancer Res. 1993;53(12):2884–7.

    CAS  PubMed  Google Scholar 

  16. Kirk GD, Camus-Randon AM, Mendy M, et al. Ser-249 p53 mutations in plasma DNA of patients with hepatocellular carcinoma from The Gambia. J Natl Cancer Inst. 2000;92(2):148–53.

    Article  CAS  PubMed  Google Scholar 

  17. Torbenson M, Lee JH, Choti M, et al. Hepatic adenomas: analysis of sex steroid receptor status and the Wnt signaling pathway. Mod Pathol. 2002;15:189–96.

    Article  PubMed  Google Scholar 

  18. Katiyar S, Dash BC, Thakur V, Guptan RC, Sarin SK, Das BC. P53 tumor suppressor gene mutations in hepatocellular carcinoma patients in India. Cancer. 2000;88:1565–73.

    Article  CAS  PubMed  Google Scholar 

  19. Park JY, Park YN, Kim DY, et al. High prevalence of significant histology in asymptomatic chronic hepatitis B patients with genotype C and high serum HBV DNA levels. J Viral Hepat. 2008;15(8):615–21.

    Article  Google Scholar 

  20. Thakur V, Guptan RC, Kazim SN, Malhotra V, Sarin SK. Profile, spectrum and significance of HBV genotypes in chronic liver disease patients in the Indian subcontinent. J Gastroenterol Hepatol. 2002;17:165–70.

    Article  PubMed  Google Scholar 

  21. Ding X, Park YN, Taltavull TC, et al. Geographic characterization of hepatitis virus infections, genotyping of hepatitis B virus, and p53 mutation in hepatocellular carcinoma analyzed by in situ detection of viral genomes from carcinoma tissues: comparison among six different countries. Jpn J Infect Dis. 2003;56:12–8.

    CAS  PubMed  Google Scholar 

  22. Park JY, Park WS, Nam SW, et al. Mutations of beta-catenin and AXIN I genes are a late event in human hepatocellular carcinogenesis. Liver Int. 2005;25:70–6.

    Article  CAS  PubMed  Google Scholar 

  23. Devereux TR, Stern MC, Flake GP, Yu MC, Zhang ZQ, London SJ. CTNNB1 mutations and beta-catenin protein accumulation in human hepatocellular carcinomas associated with high exposure to aflatoxin B1. Mol Carcinog. 2001;31:68–73.

    Article  CAS  PubMed  Google Scholar 

  24. Sahoo T, Ramakrishna B, Habibullah CM, Patil DN, Das MR. P53 mutations in human hepatocellular carcinoma in India. Curr Sci. 1993;76:554–7.

    Google Scholar 

  25. Bressac B, Kew M, Wands J, Ozturk M. Selective G to T mutations of p53 gene in hepatocellular carcinoma from Southern Africa. Nature. 1991;350:429–31.

    Article  CAS  PubMed  Google Scholar 

  26. Lunn RM, Zhang YJ, Wang LY, et al. p53 mutations, chronic hepatitis B virus infection, and aflatoxin exposure in hepatocellular carcinoma in Taiwan. Cancer Res. 1997;57:3471–7.

    CAS  PubMed  Google Scholar 

  27. Ming L, Thorgeirsson SS, Gail MH, et al. Dominant role of hepatitis B virus and cofactor role of aflatoxin in hepatocarcinogenesis in Qidong, China. Hepatology. 2002;36:1214–20.

    Article  CAS  PubMed  Google Scholar 

  28. Vesey DA, Hayward NK, Cooksley WG. p53 gene in hepatocellular carcinomas from Australia. Cancer Detect Prev. 1994;18:123–30.

    CAS  PubMed  Google Scholar 

  29. Volkmann M, Hofmann WJ, Muller M, et al. p53 overexpression is frequent in European hepatocellular carcinoma and largely independent of the codon 249 hot spot mutation. Oncogene. 1994;9:195–204.

    CAS  PubMed  Google Scholar 

  30. Bhat RV, Vasanthi S, Rao BS, et al. Aflatoxin B1 contamination in groundnut samples collected from different geographical regions of India: a multicentre study. Food Addit Contam. 1996;13:325–31.

    CAS  PubMed  Google Scholar 

  31. Bhat RV, Vasanthi S, Rao BS, et al. Aflatoxin B1 contamination in maize samples collected from different geographical regions of India—a multicentre study. Food Addit Contam. 1997;14:151–6.

    CAS  PubMed  Google Scholar 

  32. Murugavel KG, Naranatt PP, Shankar EM, et al. Prevalence of aflatoxin B1 in liver biopsies of proven hepatocellular carcinoma in India determined by an in-house immunoperoxidase test. J Med Microbiol. 2007;56:1455–9.

    Article  CAS  PubMed  Google Scholar 

  33. Hsu IC, Metcalf RA, Sun T, Welsh JA, Wang NJ, Harris CC. Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature. 1991;350:427–8.

    Article  CAS  PubMed  Google Scholar 

  34. Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet. 2002;31:339–46.

    Article  CAS  PubMed  Google Scholar 

  35. Paterlini-Brechot P, Saigo K, Murakami Y, et al. Hepatitis B virus-related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene. Oncogene. 2003;22:3911–16.

    Article  CAS  PubMed  Google Scholar 

  36. Wang J, Chenivesse X, Henglein B, Brechot C. Hepatitis B virus integration in a cyclin A gene in a hepatocellular carcinoma. Nature. 1990;343:555–7.

    Article  CAS  PubMed  Google Scholar 

  37. Brechot C, Gozuacik D, Murakami Y, Paterlini-Brechot P. Molecular bases for the development of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Semin Cancer Biol. 2000;10:211–31.

    Article  CAS  PubMed  Google Scholar 

  38. Yang WJ, Chang CJ, Yeh SH, et al. Hepatitis B virus X protein enhances the transcriptional activity of the androgen receptor through c-Src and glycogen synthase kinase-3beta kinase pathways. Hepatology. 2009;49(5):1515–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Michael Torbenson was supported by National Institutes of Health grant RO1DK078686.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banumathi Ramakrishna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vivekanandan, P., Torbenson, M. & Ramakrishna, B. Hepatitis B Virus-Associated Hepatocellular Carcinoma from India: Role of Viral Genotype and Mutations in CTNNB1 (Beta-Catenin) and TP53 Genes. J Gastrointest Canc 42, 20–25 (2011). https://doi.org/10.1007/s12029-010-9222-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-010-9222-4

Keywords

Navigation