Skip to main content

Advertisement

Log in

The Strategies Used for Treatment of Experimental Autoimmune Neuritis (EAN): A Beneficial Effect of Glatiramer Acetate Administered Intraperitoneally

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Glatiramer acetate (GA) significantly ameliorates multiple sclerosis and was initially discovered through its effects on the animal model experimental autoimmune encephalomyelitis (EAE). Guillain-Barré syndrome (GBS) is a relatively common demyelinating disease of peripheral nerves for which there is a parallel animal model, experimental autoimmune neuritis (EAN). We review the treatments found useful in EAN with special emphasis on the need for quick onset of action and the relevance of treatments used for EAE and multiple sclerosis. We evaluated the effect of GA administered by a novel intraperitoneal route in EAN. GA significantly ameliorated the severity of disease in rats (F = 6.3, p = 0.01 by analysis of variance (ANOVA)) and course of disease (F = 4.9, p = 0.02 by repeated-measures ANOVA with a day × treatment interaction term). Neurophysiology data supported the trend for the beneficial effect of GA. Myelin-induced immune cell proliferation was significantly modulated by GA (p < 0.025). This report describes a novel route of administration of GA and a rapid beneficial effect of GA in EAN. GA may be useful in human diseases, such as GBS, where the intravenous route may offer a rapid onset of drug action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arnon R, Teitelbaum D, Sela M (1989) Suppression of experimental allergic encephalomyelitis by COP1—relevance to multiple sclerosis. Isr J Med Sci 25:686–689

    PubMed  CAS  Google Scholar 

  2. Teitelbaum D, Arnon R, Sela M (1997) Copolymer 1: from basic research to clinical application. Cell Mol Life Sci 53:24–28

    Article  PubMed  CAS  Google Scholar 

  3. Soffer D, Feldman S, Alter M (1978) Epidemiology of Guillain-Barre syndrome. Neurology 28:686–690

    PubMed  CAS  Google Scholar 

  4. Shoenfeld Y, George J, Peter JB (1996) Guillain-Barre as an autoimmune disease. Int Arch Allergy Immunol 109:318–326

    Article  PubMed  CAS  Google Scholar 

  5. Israeli E, Agmon-Levin N, Blank M, Chapman J, Shoenfeld Y (2010) Guillain-Barre Syndrome-A Classical Autoimmune Disease Triggered by Infection or Vaccination. Clin Rev Allergy Immunol doi:10.1007/s12016-010-8213-3

  6. Kadlubowski M, Hughes RA (1979) Identification of the neuritogen for experimental allergic neuritis. Nature 277:140–141

    Article  PubMed  CAS  Google Scholar 

  7. Shin HC, McFarlane EF, Pollard JD, Watson EG (1989) Induction of experimental allergic neuritis with synthetic peptides from myelin P2 protein. Neurosci Lett 102:309–312

    Article  PubMed  CAS  Google Scholar 

  8. Waksman BH, Adams RD (1955) Allergic neuritis: an experimental disease of rabbits induced by the injection of peripheral nervous tissue and adjuvants. J Exp Med 102:213–236

    Article  PubMed  CAS  Google Scholar 

  9. Mendell JR, Kissel JT, Kennedy MS, Sahenk Z, Grinvalsky HT, Pittman GL, Kyler RS, Roelofs RI, Whitaker JN, Bertorini TE (1985) Plasma exchange and prednisone in Guillain-Barre syndrome: a controlled randomized trial. Neurology 35:1551–1555

    PubMed  CAS  Google Scholar 

  10. McDaneld LM, Fields JD, Bourdette DN, Bhardwaj A (2010) Immunomodulatory therapies in neurologic critical care. Neurocrit Care 12:132–143

    Article  PubMed  Google Scholar 

  11. Pithadia AB, Kakadia N (2010) Guillain-Barre syndrome (GBS). Pharmacol Rep 62:220–232

    PubMed  CAS  Google Scholar 

  12. Vucic S, Kiernan MC, Cornblath DR (2009) Guillain-Barre syndrome: an update. J Clin Neurosci 16:733–741

    Article  PubMed  Google Scholar 

  13. Harel M, Shoenfeld Y (2005) Intravenous immunoglobulin and Guillain-Barre syndrome. Clin Rev Allergy Immunol 29:281–287

    Article  PubMed  CAS  Google Scholar 

  14. Kafri M, Kloog Y, Korczyn AD, Ferdman-Aronovich R, Drory V, Katzav A, Wirguin I, Chapman J (2005) Inhibition of Ras attenuates the course of experimental autoimmune neuritis. J Neuroimmunol 168:46–55

    Article  PubMed  CAS  Google Scholar 

  15. Kafri M, Drory VE, Wang N, Rabinowitz R, Korczyn AD, Chapman J (2002) Assessment of experimental autoimmune neuritis in the rat by electrophysiology of the tail nerve. Muscle Nerve 25:51–57

    Article  PubMed  Google Scholar 

  16. Maurer M, Toyka KV, Gold R (2002) Cellular immunity in inflammatory autoimmune neuropathies. Rev Neurol Paris 158:S7–S15

    PubMed  CAS  Google Scholar 

  17. Zhang ZY, Zhang Z, Schluesener HJ (2010) MS-275, an histone deacetylase inhibitor, reduces the inflammatory reaction in rat experimental autoimmune neuritis. Neuroscience 169:370–377

    Article  PubMed  CAS  Google Scholar 

  18. Zhang Z, Zhang ZY, Schluesener HJ (2009) Compound A, a plant origin ligand of glucocorticoid receptors, increases regulatory T cells and M2 macrophages to attenuate experimental autoimmune neuritis with reduced side effects. J Immunol 183:3081–3091

    Article  PubMed  CAS  Google Scholar 

  19. Tan XD, Dou YC, Shi CW, Duan RS, Sun RP (2009) Administration of dehydroepiandrosterone ameliorates experimental autoimmune neuritis in Lewis rats. J Neuroimmunol 207:39–44

    Article  PubMed  CAS  Google Scholar 

  20. Zhang Z, Zhang ZY, Fauser U, Schluesener HJ (2008) Valproic acid attenuates inflammation in experimental autoimmune neuritis. Cell Mol Life Sci 65:4055–4065

    Article  PubMed  CAS  Google Scholar 

  21. Zhang ZY, Zhang Z, Fauser U, Schluesener HJ (2009) Improved outcome of EAN, an animal model of GBS, through amelioration of peripheral and central inflammation by minocycline. J Cell Mol Med 13:341–351

    Article  PubMed  CAS  Google Scholar 

  22. Sarkey JP, Richards MP, Stubbs EB Jr (2007) Lovastatin attenuates nerve injury in an animal model of Guillain-Barre syndrome. J Neurochem 100:1265–1277

    Article  PubMed  CAS  Google Scholar 

  23. Bao L, Lindgren JU, Zhu Y, Ljunggren HG, Zhu J (2003) Exogenous soluble tumor necrosis factor receptor type I ameliorates murine experimental autoimmune neuritis. Neurobiol Dis 12:73–81

    Article  PubMed  CAS  Google Scholar 

  24. Taylor JM, Pollard JD (2007) Soluble TNFR1 inhibits the development of experimental autoimmune neuritis by modulating blood-nerve-barrier permeability and inflammation. J Neuroimmunol 183:118–124

    Article  PubMed  CAS  Google Scholar 

  25. Castro FR, Farias AS, Proenca PL, de La Hoz C, Langone F, Oliveira EC, Toyama MH, Marangoni S, Santos LM (2007) The effect of treatment with crotapotin on the evolution of experimental autoimmune neuritis induced in Lewis rats. Toxicon 49:299–305

    Article  PubMed  CAS  Google Scholar 

  26. Nicoletti F, Creange A, Orlikowski D, Bolgert F, Mangano K, Metz C, Di Marco R, Al Abed Y (2005) Macrophage migration inhibitory factor (MIF) seems crucially involved in Guillain-Barre syndrome and experimental allergic neuritis. J Neuroimmunol 168:168–174

    Article  PubMed  CAS  Google Scholar 

  27. Schmidt J, Elflein K, Stienekemeier M, Rodriguez-Palmero M, Schneider C, Toyka KV, Gold R, Hunig T (2003) Treatment and prevention of experimental autoimmune neuritis with superagonistic CD28-specific monoclonal antibodies. J Neuroimmunol 140:143–152

    Article  PubMed  CAS  Google Scholar 

  28. Miyamoto K, Oka N, Kawasaki T, Miyake S, Yamamura T, Akiguchi I (2002) New cyclooxygenase-2 inhibitors for treatment of experimental autoimmune neuritis. Muscle Nerve 25:280–282

    Article  PubMed  CAS  Google Scholar 

  29. Di Marco R, Khademi M, Wallstrom E, Muhallab S, Nicoletti F, Olsson T (1999) Amelioration of experimental allergic neuritis by sodium fusidate (fusidin): suppression of IFN-gamma and TNF-alpha and enhancement of IL-10. J Autoimmun 13:187–195

    Article  PubMed  Google Scholar 

  30. Hartung HP, Schafer B, Fierz W, Heininger K, Toyka KV (1987) Ciclosporin A prevents P2 T cell line-mediated experimental autoimmune neuritis (AT-EAN) in rat. Neurosci Lett 83:195–200

    Article  PubMed  CAS  Google Scholar 

  31. Bai XF, Zhu J, Zhang GX, Kaponides G, Hojeberg B, van der Meide PH, Link H (1997) IL-10 suppresses experimental autoimmune neuritis and down-regulates TH1-type immune responses. Clin Immunol Immunopathol 83:117–126

    Article  PubMed  CAS  Google Scholar 

  32. Jung S, Toyka K, Hartung HP (1996) T cell directed immunotherapy of inflammatory demyelination in the peripheral nervous system. Potent suppression of the effector phase of experimental autoimmune neuritis by anti-CD2 antibodies. Brain 119(Pt 4):1079–1090

    Article  PubMed  Google Scholar 

  33. Archelos JJ, Maurer M, Jung S, Toyka KV, Hartung HP (1993) Suppression of experimental allergic neuritis by an antibody to the intracellular adhesion molecule ICAM-1. Brain 116(Pt 5):1043–1058

    Article  PubMed  Google Scholar 

  34. Usuki S, Taguchi K, Thompson SA, Chapman PB, Yu RK (2010) Novel anti-idiotype antibody therapy for lipooligosaccharide-induced experimental autoimmune neuritis: use relevant to Guillain-Barre syndrome. J Neurosci Res 88:1651–1663

    PubMed  CAS  Google Scholar 

  35. Jung S, Gaupp S, Korn T, Kollner G, Hartung HP, Toyka KV (2004) Biphasic form of experimental autoimmune neuritis in dark Agouti rats and its oral therapy by antigen-specific tolerization. J Neurosci Res 75:524–535

    Article  PubMed  CAS  Google Scholar 

  36. Zou LP, Ma DH, Levi M, Wahren B, Wei L, Mix E, van der Meide PH, Link H, Zhu J (1999) Antigen-specific immunosuppression: nasal tolerance to P0 protein peptides for the prevention and treatment of experimental autoimmune neuritis in Lewis rats. J Neuroimmunol 94:109–121

    Article  PubMed  CAS  Google Scholar 

  37. Offenhausser M, Herr AS, Hartkamp J, Wauben M, Magnus T, Grauer O, Seubert S, Weishaupt A, Toyka KV, Gold R, Troppmair J (2002) Truncation of the neuritogenic peptide bP2(60-70) results in the generation of altered peptide ligands with the potential to interfere with T cell activation. J Neuroimmunol 129:97–105

    Article  PubMed  CAS  Google Scholar 

  38. Dati G, Quattrini A, Bernasconi L, Malaguti MC, Antonsson B, Nicoletti F, Alliod C, Di Marco R, Sagot Y, Vitte PA, Hiver A, Greco B, Roach A, Zaratin PF (2007) Beneficial effects of r-h-CLU on disease severity in different animal models of peripheral neuropathies. J Neuroimmunol 190:8–17

    Article  PubMed  CAS  Google Scholar 

  39. Bechtold DA, Yue X, Evans RM, Davies M, Gregson NA, Smith KJ (2005) Axonal protection in experimental autoimmune neuritis by the sodium channel blocking agent flecainide. Brain 128:18–28

    Article  PubMed  Google Scholar 

  40. The Guillain-Barre syndrome Study Group (1985) Plasmapheresis and acute Guillain-Barre syndrome. Neurology 35:1096–1104

    Google Scholar 

  41. Enders U, Toyka KV, Hartung HP, Gold R (1997) Failure of intravenous immunoglobulin (IVIg) therapy in experimental autoimmune neuritis (EAN) of the Lewis rat. J Neuroimmunol 76:112–116

    Article  PubMed  CAS  Google Scholar 

  42. Gabriel CM, Gregson NA, Redford EJ, Davies M, Smith KJ, Hughes RA (1997) Human immunoglobulin ameliorates rat experimental autoimmune neuritis. Brain 120(Pt 9):1533–1540

    Article  PubMed  Google Scholar 

  43. Jia J, Jia J, Pollock M (2000) Treatment of rats with experimental allergic neuritis using high dose immunoglobulin. Chin Med J (Engl) 113:1096–1099

    CAS  Google Scholar 

  44. Lin HH, Spies JM, Lu JL, Pollard JD (2007) Effective treatment of experimental autoimmune neuritis with human immunoglobulin. J Neurol Sci 256:61–67

    Article  PubMed  CAS  Google Scholar 

  45. Lin HH, Wang MX, Spies JM, Pollard JD (2007) Effective treatment of experimental autoimmune neuritis with Fc fragment of human immunoglobulin. J Neuroimmunol 186:133–140

    Article  PubMed  CAS  Google Scholar 

  46. Miyagi F, Horiuchi H, Nagata I, Kitahara S, Kiyoki M, Komoriya K, Yuki N (1997) Fc portion of intravenous immunoglobulin suppresses the induction of experimental allergic neuritis. J Neuroimmunol 78:127–131

    Article  PubMed  CAS  Google Scholar 

  47. Hughes RA, Kadlubowski M, Hufschmidt A (1981) Treatment of acute inflammatory polyneuropathy. Ann Neurol 9(Suppl):125–133

    Article  PubMed  Google Scholar 

  48. Zhu J, Bai XF, Hedlund G, Bjork J, Bakhiet M, Van Der Meide PH, Link H (1999) Linomide suppresses experimental autoimmune neuritis in Lewis rats by inhibiting myelin antigen-reactive T and B cell responses. Clin Exp Immunol 115:56–63

    Article  PubMed  CAS  Google Scholar 

  49. Zou LP, Abbas N, Volkmann I, Nennesmo I, Levi M, Wahren B, Winblad B, Hedlund G, Zhu J (2002) Suppression of experimental autoimmune neuritis by ABR-215062 is associated with altered Th1/Th2 balance and inhibited migration of inflammatory cells into the peripheral nerve tissue. Neuropharmacology 42:731–739

    Article  PubMed  CAS  Google Scholar 

  50. Zou LP, Ma DH, Wei L, van der Meide PH, Mix E, Zhu J (1999) IFN-beta suppresses experimental autoimmune neuritis in Lewis rats by inhibiting the migration of inflammatory cells into peripheral nervous tissue. J Neurosci Res 56:123–130

    Article  PubMed  CAS  Google Scholar 

  51. Yu S, Chen Z, Mix E, Zhu SW, Winblad B, Ljunggren HG, Zhu J (2002) Neutralizing antibodies to IL-18 ameliorate experimental autoimmune neuritis by counter-regulation of autoreactive Th1 responses to peripheral myelin antigen. J Neuropathol Exp Neurol 61:614–622

    PubMed  CAS  Google Scholar 

  52. Zhang Z, Zhang ZY, Fauser U, Schluesener HJ (2008) FTY720 ameliorates experimental autoimmune neuritis by inhibition of lymphocyte and monocyte infiltration into peripheral nerves. Exp Neurol 210:681–690

    Article  PubMed  CAS  Google Scholar 

  53. Zhang ZY, Zhang Z, Zug C, Nuesslein-Hildesheim B, Leppert D, Schluesener HJ (2009) AUY954, a selective S1P(1) modulator, prevents experimental autoimmune neuritis. J Neuroimmunol 216:59–65

    Article  PubMed  CAS  Google Scholar 

  54. O'Connor P, Filippi M, Arnason B, Comi G, Cook S, Goodin D, Hartung HP, Jeffery D, Kappos L, Boateng F, Filippov V, Groth M, Knappertz V, Kraus C, Sandbrink R, Pohl C, Bogumil T (2009) 250 microg or 500 microg interferon beta-1b versus 20 mg glatiramer acetate in relapsing–remitting multiple sclerosis: a prospective, randomised, multicentre study. Lancet Neurol 8:889–897

    Article  PubMed  Google Scholar 

  55. McDermott JR, Keith AB (1980) Antigen-induced suppression of experimental allergic neuritis in the guinea pig. J Neurol Sci 46:137–143

    Article  PubMed  CAS  Google Scholar 

  56. Kadlubowski M, Hughes RA, Gregson NA (1980) Experimental allergic neuritis in the Lewis rat: characterization of the activity of peripheral myelin and its major basic protein, P2. Brain Res 184:439–454

    Article  PubMed  CAS  Google Scholar 

  57. Hoffman PM, Powers JM, Weise MJ, Brostoff SW (1980) Experimental allergic neuritis. I. Rat strain differences in the response to bovine myelin antigens. Brain Res 195:355–362

    Article  PubMed  CAS  Google Scholar 

  58. Aharoni R, Eilam R, Stock A, Vainshtein A, Shezen E, Gal H, Friedman N, Arnon R (2010) Glatiramer acetate reduces Th-17 inflammation and induces regulatory T-cells in the CNS of mice with relapsing–remitting or chronic EAE. J Neuroimmunol 225:100–111

    Article  PubMed  CAS  Google Scholar 

  59. Aharoni R, Teitelbaum D, Sela M, Arnon R (1997) Copolymer 1 induces T cells of the T helper type 2 that crossreact with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 94:10821–10826

    Article  PubMed  CAS  Google Scholar 

  60. Begum-Haque S, Sharma A, Kasper IR, Foureau DM, Mielcarz DW, Haque A, Kasper LH (2008) Downregulation of IL-17 and IL-6 in the central nervous system by glatiramer acetate in experimental autoimmune encephalomyelitis. J Neuroimmunol 204:58–65

    Article  PubMed  CAS  Google Scholar 

  61. Laura M, Gregson NA, Curmi Y, Hughes RA (2002) Efficacy of leukemia inhibitory factor in experimental autoimmune neuritis. J Neuroimmunol 133:56–59

    Article  PubMed  CAS  Google Scholar 

  62. Yu S, Zhu Y, Chen Z, Alheim M, Ljungberg A, Zhu J (2002) Initiation and development of experimental autoimmune neuritis in Lewis rats is independent of the cytotoxic capacity of NKR-P1A + cells. J Neurosci Res 67:823–828

    Article  PubMed  CAS  Google Scholar 

  63. Stienekemeier M, Falk K, Rotzschke O, Weishaupt A, Schneider C, Toyka KV, Gold R, Strominger JL (2001) Vaccination, prevention, and treatment of experimental autoimmune neuritis (EAN) by an oligomerized T cell epitope. Proc Natl Acad Sci USA 98:13872–13877

    Article  PubMed  CAS  Google Scholar 

  64. Felts PA, Smith KJ, Gregson NA, Hughes RA (2002) Brain-derived neurotrophic factor in experimental autoimmune neuritis. J Neuroimmunol 124:62–69

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by a grant from Teva Pharmaceuticals. We thank Dr. Liat Hayardeni for her very helpful critical discussion and review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joab Chapman.

Additional information

Ramona Aronovich and Aviva Katzav contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aronovich, R., Katzav, A. & Chapman, J. The Strategies Used for Treatment of Experimental Autoimmune Neuritis (EAN): A Beneficial Effect of Glatiramer Acetate Administered Intraperitoneally. Clinic Rev Allerg Immunol 42, 181–188 (2012). https://doi.org/10.1007/s12016-010-8246-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-010-8246-7

Keywords

Navigation