Skip to main content
Log in

LPS-Induced Formation of Immunoproteasomes: TNF-α and Nitric Oxide Production are Regulated by Altered Composition of Proteasome-Active Sites

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Stimulation of mouse macrophages with LPS leads to tumor necrosis factor (TNF-α) secretion and nitric oxide (NO) release at different times through independent signaling pathways. While the precise regulatory mechanisms responsible for these distinct phenotypic responses have not been fully delineated, results of our recent studies strongly implicate the cellular cytoplasmic ubiquitin–proteasome pathway as a key regulator of LPS-induced macrophage inflammatory responses. Our objective in this study was to define the relative contribution of specific proteasomal active-sites in induction of TNF-α and NO after LPS treatment of RAW 264.7 macrophages using selective inhibitors of these active sites. Our data provide evidence that LPS stimulation of mouse macrophages triggers a selective increase in the levels of gene and protein expression of the immunoproteasomes, resulting in a modulation of specific functional activities of the proteasome and a corresponding increase in NO production as compared to untreated controls. These findings suggest the LPS-dependent induction of immunoproteasome. In contrast, we also demonstrate that TNF-α expression is primarily dependent on both the chymotrypsin- and the trypsin-like activities of X, Y, Z subunits of the proteasome. Proteasome-associated post-acidic activity alone also contributes to LPS-induced expression of TNF-α. Taken together; our results indicate that LPS-induced TNF-α in macrophages is differentially regulated by each of the three proteasome activities. Since addition of proteasome inhibitors to mouse macrophages profoundly affects the degradation of proteins involved in signal transduction, we conclude that proteasome-specific degradation of several signaling proteins is likely involved in differential regulation of LPS-dependent secretion of proinflammatory mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Oberholzer, A., Oberholzer, C., & Moldawar, L. L. (2001). Sepsis syndromes; understanding the role of innate and acquired immunity. Shock, 16, 83–96.

    Article  PubMed  CAS  Google Scholar 

  2. Zingarelli, B., Halusha, P. V., Caputi, A. P., & Cook, J. A. (1995). Increased nitric oxide synthesis during the development of endotoxin tolerance. Shock, 3, 102–108.

    PubMed  CAS  Google Scholar 

  3. Shieh, P., Zhou, M., Ornan, D. A., Chaudry, I. H., & Wang, P. (2000). Upregulation of inducible nitric oxide synthase and nitric oxide occurs later than the onset of the hyperdynamic response during sepsis. Shock, 13, 325–329.

    Article  PubMed  CAS  Google Scholar 

  4. Amura, C. R., Chen, L. C., Hirohashi, N., Lei, M. G., & Morrison, D. C. (1997). Two functionally independent pathways for lipopolysaccharide-dependent activation of mouse peritoneal macrophages. Journal of Immunology, 159, 5079–5083.

    CAS  Google Scholar 

  5. Toshchakov, V. B., Jones, W., Zhang, S., Perera, P.-Y., Thomas, K., Cody, M. J., et al. (2002). TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nature Immunology, 3, 392–398.

    Article  PubMed  CAS  Google Scholar 

  6. Qureshi, N., Perera, P.-Y., Splitter, G., Morrison, D. C., & Vogel, S. N. (2003). The Proteasome as a LPS-binding protein in macrophages. Toxic lipopolysaccharide activates the proteasome complex. Journal of Immunology, 171, 1515–1525.

    CAS  Google Scholar 

  7. Qureshi, N., Vogel, S. N., Van Way, C., I. I. I., Papasian, C. J., Qureshi, A. A., & Morrison, D. C. (2005). The proteasome. A central regulator of Inflammation and macrophage function. Immunologic Research, 31, 243–260.

    Article  PubMed  CAS  Google Scholar 

  8. Shen, J., Reis, J., Morrison, D. C., Papasian, C., Sreekumar, R., Kolbert, C., et al. (2006). Key Inflammatory signaling pathways are regulated by the proteasome. Shock, 25, 472–484.

    Article  PubMed  CAS  Google Scholar 

  9. Shen, J., Gao, J. J., Zhang, G., Tan, X., Morrison, D. C., Papasian, C., et al. (2006). Proteasome inhibitor, lactacystin blocks CpG DNA- and peptidoglycan induced inflammatory genes, cytokines and mitogen-activated protein kinases in macrophages. Shock, 25, 594–599.

    Article  PubMed  CAS  Google Scholar 

  10. Hirsch, C., & Pleogh, H. L. (2000). Intracellular targeting of the proteasome. Trends in Cell Biology, 10, 268–272.

    Article  PubMed  CAS  Google Scholar 

  11. Rechsteiner, M., Realini, C., & Ustrell, V. (2000). The proteasome activator 11S REG (PA28) and class I antigen presentation. Biochemical Journal, 345, 1–15.

    Article  PubMed  CAS  Google Scholar 

  12. Elenich, L. A., Nandi, D., Kent, A. E., McCuskey, T. S., Cruz, M., Lyer, M. N., et al. (1999). The complete primary structure of mouse 20S proteasomes. Immunogenetics, 49, 835–842.

    Article  PubMed  CAS  Google Scholar 

  13. Dahlman, B., Hendil, K. B., Kristensen, P., Uerkvitz, W., Sobek, A., & Kopp, F. (2000). Subunit arrangement in the human proteasome. In W. Hilt & D. H. Wolf (Eds.), Proteasomes; The world of regulatory proteolysis (pp. 37–47). Georgetown, TX: Landes Bioscience.

    Google Scholar 

  14. Groettrup, M., Khan, S., Schwarz, K., & Schmidtke, G. (2001). Interferon-γ inducible exchanges of 20S proteasome active subunits: Why? Biochimie, 83, 367–372.

    Article  PubMed  CAS  Google Scholar 

  15. Gaczynska, M., Rock, K. L., Spies, T., & Goldberg, A. L. (1994). Peptidase activities of proteasomes are differentially regulated by the major histocompatibility complex-encoded genes for LMP2 and LMP7. Journal of Biological Chemistry, 91, 9213–9217.

    CAS  Google Scholar 

  16. Qureshi, N., Takayama, K., Mascagni, P., Honovich, J., Wong, R., & Cotter, R. J. (1988). Complete structural determination of lipopolysaccharides obtained from deep rough mutant of Escherichia coli: Purification by high performance liquid chromatography and direct analysis by plasma desorption mass spectrometry. Journal of Biological Chemistry, 263, 11971–11976.

    PubMed  CAS  Google Scholar 

  17. Denizot, F., & Lang, R. (1986). Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods, 89, 271–277.

    Article  PubMed  CAS  Google Scholar 

  18. Lorsbach, R. B., Murphy, W. J., Lowenstein, C. J., Snyder, S. H., & Russell, S. W. (1993). Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing: Molecular basis for the synergy between interferon-gamma and lipopolysaccharide. Journal of Biological Chemistry, 268, 1908–1913.

    PubMed  CAS  Google Scholar 

  19. Reis, J., Tan, X., Yang, R., Rockwell, C. E., Papasian, C. J., Vogel, S. N., et al. (2008). A combination of proteasome inhibitors and antibiotics prevents lethality in a septic shock model. Innate Immunity, 14, 319–329.

    Article  PubMed  CAS  Google Scholar 

  20. Moravec, R. A., O’Brien, M. A., Daily, W. J., Scurria, M. A., Bernad, L., & Riss, T. L. (2009). Cell-based bioluminescent assays for all three proteasome activities in a homogenous format. Analytical Biochemistry, 387, 294–302.

    Article  PubMed  CAS  Google Scholar 

  21. Britton, M., Lucas, M. M., Downey, S. L., Screen, M., Verdoes, M., Pletnev, A. A., et al. (2009). Selective inhibitors of proteasome’s caspase-like sites sensitize cells to specific inhibition of chymotrypsin-like sites. Chemistry & Biology, 16, 1278–1289.

    Article  CAS  Google Scholar 

  22. Gao, J. J., Shen, J., Kohlbert, C., Raghavaikaimal, S., Papasian, C. J., Qureshi, A. A., et al. (2010). The proteasome regulates bacterial CpG DNA-induced signaling pathways in murine macrophages. Shock, 34, 390–401.

    Article  PubMed  CAS  Google Scholar 

  23. Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., et al. (2003). Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science, 301, 640–643.

    Article  PubMed  CAS  Google Scholar 

  24. Palombella, V. J., Rando, O. J., Goldberg, A. L., & Maniatis, T. (1994). The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-κB. Cell, 78, 773–785.

    Article  PubMed  CAS  Google Scholar 

  25. Hollenberg, S. M., Broussard, M., Osman, J., & Parillo, J. E. (2000). Increased microvascular reactivity and improved mortality in septic mice lacking inducible nitric oxide synthase. Circulation Research, 86, 774–779.

    PubMed  CAS  Google Scholar 

  26. Sakai, K., Suzuki, H., Oda, H., Akaike, T., Azuma, Y., Murakami, T., et al. (2006). Phosphoinositide 3-kinase in nitric oxide synthesis in macrophage. Critical dimerization of inducible nitric-oxide synthase. J Biol Chem, 281, 17736–17742.

    Article  PubMed  CAS  Google Scholar 

  27. Kolodziejski, P. W., Musial, A., Koo, J.-S., & Eissa, N. T. (2002). Ubiquitination of inducible nitric oxide synthase is required for its degradation. PNAS., 99, 12315–12320.

    Article  PubMed  CAS  Google Scholar 

  28. Musial, A., & Eissa, N. T. (2001). Inducible nitric-oxide synthase is regulated by the proteasome degradation pathway. Journal of Biological Chemistry, 276, 24268–24273.

    Article  PubMed  CAS  Google Scholar 

  29. Tracey, K. J., Manogue, K. R., Fong, Y., Hesse, D. G., Nguyen, H. T., Kuo, G. C., et al. (1988). Cachectin/tumor necrosis factor induces cachexia, anemia, and inflammation. Journal of Experimental Medicine, 167, 1211–1227.

    Article  PubMed  CAS  Google Scholar 

  30. Kumatori, A., Tanaka, K., Inamura, N., Sone, S., Ogura, T., Matsumoto, T., et al. (1990). Abnormally high expression of proteasomes in human leukemic cells. Proceedings of the National Academy of Sciences of the United States of America, 87, 7071–7075.

    Article  PubMed  CAS  Google Scholar 

  31. Shakov, A. N., Collart, M. A., Vassalli, P., Nedospasov, S. A., & Jongeneel, C. V. (1990). Kappa B-type enhancers are involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor alpha gene in primary macrophages. Journal of Experimental Medicine, 171, 35–47.

    Article  Google Scholar 

  32. Collart, M. A., Bauerle, P., & Vassalli, P. (1990). Regulation of tumor necrosis factor alpha transcription in macrophages: Involvement of four kappa B-like motifs and of constitutive and inducible forms of NF-kappa B. Molecular and Cellular Biology, 10, 1498–1506.

    PubMed  CAS  Google Scholar 

  33. Tsytsykova, A. V., Falvo, J. V., Schmidt-Supprian, M., Courtois, G., Thanos, D., & Goldfeld, A. E. (2007). Post-induction, stimulus-specific regulation of tumor necrosis factor mRNA expression. Journal of Biological Chemistry, 282, 11629–11638.

    Article  PubMed  CAS  Google Scholar 

  34. Falvo, J. V., Tsytsykova, A. V., & Goldfeld, A. E. (2010). Transcriptional control of the TNF Gene. In G. Kollias & P. P. Sfikakis (Eds.), TNF pathophysiology. Molecular and cellular mechanisms. Current Directions in Autoimmunity (Vol. 11, pp. 27–60). Basel: Karger.

    Google Scholar 

  35. Rao, P., Hayden, M. S., Long, M., Scott, M. L., West, A. P., Zhang, D., et al. (2010). IκBβ acts to inhibit and activate gene expression during the inflammatory response. Nature, 466, 1115–1119.

    Article  PubMed  CAS  Google Scholar 

  36. Jarvis, B. W., Harris, T. H., Qureshi, N., & Splitter, G. A. (2002). Rough lipopolysaccharide from Brucella abortus and Escherichia coli differentially activates the same mitogen-activated protein kinase signaling pathways for tumor necrosis factor alpha in RAW 264.7 macrophage-like cells. Infection and Immunity, 70, 7165–7168.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported in part by NIH Grants GM-50870 (NQ), AI-18797 (SNV), and CA-124634 (AFK). We thank Drs. Alfred L. Goldberg and John J. Monaco for helpful suggestions. We thank Dr. Peter Silverstein for help with the real-time RT-PCR of proteasome subunits in macrophages.

Conflict of interest

The authors have no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilofer Qureshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reis, J., Guan, X.Q., Kisselev, A.F. et al. LPS-Induced Formation of Immunoproteasomes: TNF-α and Nitric Oxide Production are Regulated by Altered Composition of Proteasome-Active Sites. Cell Biochem Biophys 60, 77–88 (2011). https://doi.org/10.1007/s12013-011-9182-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9182-8

Keywords

Navigation