Skip to main content
Log in

Lipase Production in Solid-State Fermentation Monitoring Biomass Growth of Aspergillus niger Using Digital Image Processing

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Paiva, A. L., Balcão, V. M., & Malcata, F. X. (2000). Enzyme and Microbial Technology, 27, 187–204.

    Article  CAS  Google Scholar 

  2. Guamgui, H., Karra-Chaâbouni, M., & Gargouri, Y. (2004). Enzyme and Microbial Technology, 35, 355–363.

    Article  Google Scholar 

  3. Wang, H. X., Wu, H., Ho, C. T., & Weng, X. C. (2006). Food Chemistry, 97, 661–665.

    Article  CAS  Google Scholar 

  4. Candenas, F., Castro, M. S., Sanchez-Montero, J. M., Sinisterra, J. V., Valmaseda, M., Elson, S. W., et al. (2001). Enzyme and Microbial Technology, 28, 145–154.

    Article  Google Scholar 

  5. Rodriguez, J. A., Mateos, J. C., Nungaray, J., González, V., Bhagnagar, T., Roussos, S., et al. (2006). Process Biochemistry, 41, 2264–2269.

    Article  CAS  Google Scholar 

  6. Couri, S., Merces, E. P., Neves, B. C. V., & Senna, L. F. (2006). Journal de Microscopie, 224, 290–297.

    Article  CAS  Google Scholar 

  7. Okazaki, N., Sugama, S., & Tanaka, T. (1980). Journal of Fermentation Technology, 58, 471–476.

    CAS  Google Scholar 

  8. Peñaloza, W., Davey, C. L., Kell, D. B., & Hedger, J. N. (1991). W orld Journal of Microbiology & Biotechnology, 7, 248–259.

    Article  Google Scholar 

  9. Murthy, M. V. R., Thakur, M. S., & Karanth, N. G. (1993). Bioscience Bioelectrochemistry, 8, 59–63.

    CAS  Google Scholar 

  10. Majeti, N., & Kumar, R. (2005). Reactive & Functional Polymers, 46, 1–27.

    Google Scholar 

  11. Cox, P. W., & Thomas, C. R. (1992). Biotechnic Bioengeneering, 39, 945–952.

    Article  Google Scholar 

  12. Couri, S., Pinto, G. A. S., Senna, L. F., & Martelli, H. L. (2003). Brazilian Journal of Microbiology, 33, 1–6.

    Google Scholar 

  13. Nopharatana, M., Howes, T., & Mitchel, D. (1998). Biotechnology Technique, 12, 313–318.

    Article  CAS  Google Scholar 

  14. Loera, O., & Viniegra-González, G. (1998). Biotechnology Techology, 12, 801–804.

    Article  CAS  Google Scholar 

  15. Daniel, O., Schonholzer, F., & Zeyer, J. (1995). Environmental Microbiology, 61, 3910–3918.

    CAS  Google Scholar 

  16. Miri, T., Cox, P. W., & Fryer, P. J. (2003). Biotechnology Letters, 25, 295–300.

    Article  CAS  Google Scholar 

  17. Gonzalez, R. C., & Woods, R. E. (1993). Digital image processing. New York: Addison-Wesley Publishing.

    Google Scholar 

  18. Couri, S., & Farias, A. X. (1995). Brazilian Journal of Microbiology, 26, 314–317.

    CAS  Google Scholar 

  19. Penha, E. M., Couri, S., Senna, L. F., Terzi, S. C., Neves, B. C. de V., & Alonso, S. P. (2006). Brazilian Archives of Biology and Technology, 49, 101–105.

    Google Scholar 

  20. Penman, D., Britton, G., Hardwick, K., Collin, H. A., & Isaac, S. (2000). Mycological Research, 104, 671–675.

    Article  CAS  Google Scholar 

  21. Pereira, E. B., Castro, H. F., Moraes, F. F., & Zanin, G. M. (2001). Applied Biochemistry and Biotechnology, 91–93, 739–752.

    Article  Google Scholar 

  22. Oliveira, D., Feihrmann, A. C., Dariva, C., Cunha, A. G., Bevilaqua, J. V., Destain, J., et al. (2006). Journal of Molecular Catalysis. B, Enzymatic, 39, 117–123.

    Article  Google Scholar 

  23. Li, D., Wang, B., & Tan, T. (2006). Journal of Molecular Catalysis. B, Enzymatic, 43, 40–43.

    Article  CAS  Google Scholar 

  24. Dalmau, E., Montesinos, J. L., Lotti, M., & Casas, C. (2000). Enzyme and Microbial Technology, 26, 657–663.

    Article  CAS  Google Scholar 

  25. Couto, S. R., & Sanromán, M. A. (2006). Journal of Food Engineering, 76, 291–302.

    Article  CAS  Google Scholar 

  26. Gombert, A. K., Pinto, A. L., Castilho, L. R., & Freire, D. M. G. (1999). Process Biochemistry, 35, 85–90.

    Article  CAS  Google Scholar 

  27. Gundersen, H. J. G. (2002). Journal de Microscopie, 207, 155–160.

    Article  CAS  Google Scholar 

  28. Couri, S., Terzi, S. C., Pinto, G. A. S., Freitas, S. P., & Costa, A. C. A. (2000). Process Biochemistry, 36, 255–261.

    Article  CAS  Google Scholar 

  29. Carta, G., Gainer, J. L., & Gibson, M. (1992). Enzyme and Microbial Technology, 14, 904–910.

    Article  CAS  Google Scholar 

  30. Shimada, Y., Watanabe, Y., Sugihara, A., & Toninaga, Y. (2002). Journal of Molecular Catalysis B Enzymatic, 17, 133–142.

    Article  CAS  Google Scholar 

  31. Soumanou, M. M., & Bornscheuer, U. T. (2003). Enzyme and Microbial Technology, 33, 97–103.

    Article  CAS  Google Scholar 

  32. Bernardes, O. L., Bevilaqua, J. V., Leal, M. C. M. R., Freire, D. M. G., & Langone, M. A. P. (2007). Applied Biochemistry and Biotechnology, 136–140, 105–114.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Petrobras for the financial support and D.Sc. Denise Maria Guimarães Freire for the lipase immobilization procedures. Lilian Ferreira de Senna and Marta Antunes Pereira Langone thank Prociência Program/UERJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sônia Couri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutra, J.C.V., da C. Terzi, S., Bevilaqua, J.V. et al. Lipase Production in Solid-State Fermentation Monitoring Biomass Growth of Aspergillus niger Using Digital Image Processing. Appl Biochem Biotechnol 147, 63–75 (2008). https://doi.org/10.1007/s12010-007-8068-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8068-0

Keywords

Navigation