Skip to main content

Advertisement

Log in

The Role of Glucocerebrosidase Mutations in Parkinson Disease and Lewy Body Disorders

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Mutations in the gene encoding glucocerebrosidase (GBA), the enzyme deficient in the lysosomal storage disorder Gaucher disease, are associated with the development of Parkinson disease and other Lewy body disorders. In fact, GBA variants are currently the most common genetic risk factor associated with parkinsonism, and identified subjects with Parkinson disease are more than five times more likely to carry mutations in GBA. The mechanisms underlying this association are not known, but proposed theories include enhanced protein aggregation, alterations in lipid levels, and autophagy-lysosomal dysfunction promoting the retention of undegraded proteins. We review the genetic studies linking GBA to parkinsonism, as well as several of the mechanisms postulated to explain the association of GBA mutations and the synucleinopathies, which demonstrate how studies of a rare mendelian disease may provide insights into our understanding of a common complex disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Beutler E: Gaucher disease: new molecular approaches to diagnosis and treatment. Science 1992, 256:794–799.

    Article  CAS  PubMed  Google Scholar 

  2. Horowitz M, Wilder S, Horowitz Z, et al.: The human glucocerebrosidase gene and pseudogene: structure and evolution. Genomics 1989, 4:87–96.

    Article  CAS  PubMed  Google Scholar 

  3. Sorge J, West C, Westwood B, Beutler E: Molecular cloning and nucleotide sequence of human glucocerebrosidase cDNA. Proc Nat Acad Sci U S A 1985, 82:7289–7293.

    Article  CAS  Google Scholar 

  4. Barneveld RA, Keijzer W, Tegelaers FP, et al.: Assignment of the gene coding for human beta-glucocerebrosidase to the region q21–q31 of chromosome 1 using monoclonal antibodies. Hum Genet 1993, 64:227–231.

    Article  Google Scholar 

  5. Winfield SL, Tayebi N, Martin BM, et al.: Identification of three additional genes contiguous to the glucocerebrosidase locus on chromosome 1q21: implications for Gaucher disease. Genome Res 1997, 7:1020–1026.

    CAS  PubMed  Google Scholar 

  6. Sorge J, Gross E, West C, Beutler E: High level transcription of the glucocerebrosidase pseudogene in normal subjects and patients with Gaucher disease. J Clin Invest 1990, 86:1137–1141.

    Article  CAS  PubMed  Google Scholar 

  7. Gaucher PCE: On primary epithelioma of the spleen: idiopathic hypertrophy of the spleen without leukemia. Thesis, Doctor of Medicine. Paris: Octave Doin; 1882.

  8. • Hruska KS, LaMarca ME, Scott CR, Sidransky E: Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Hum Mutat 2008, 29:567–583. This work provides a comprehensive review of the structure of GBA and the mutations identified.

    Google Scholar 

  9. Koprivica V, Stone DL, Park JK, et al.: Analysis and classification of 304 mutant alleles in patients with type 1 and type 3 Gaucher disease. Am J Hum Genet 2000, 66:1777–1786.

    Article  CAS  PubMed  Google Scholar 

  10. Goker-Alpan O, Hruska KS, Orvisky E, et al.: Divergent phenotypes in Gaucher disease implicate the role of modifiers. J Med Genet 2005, 42:e37.

    Article  CAS  PubMed  Google Scholar 

  11. Neudorfer O, Giladi N, Elstein D, et al.: Occurrence of Parkinson’s syndrome in type I Gaucher disease. QJM 1996, 89:691–694.

    CAS  PubMed  Google Scholar 

  12. Machaczka M, Rucinska M, Skotnicki AB, Jurczak W: Parkinson’s syndrome preceding clinical manifestation of Gaucher’s disease. Am J Hematol 1999, 61:216–217.

    Article  CAS  PubMed  Google Scholar 

  13. Várkonyi J, Rosenbaum H, Baumann N, et al.: Gaucher disease associated with parkinsonism: four further case reports. Am J Med Genet A 2003, 116A:348–351.

    Article  PubMed  Google Scholar 

  14. Goker-Alpan O, Schiffmann R, LaMarca ME, et al.: Parkinsonism among Gaucher disease carriers. J Med Genet 2004, 41:937–940.

    Article  CAS  PubMed  Google Scholar 

  15. Halperin A, Elstein D, Zimran A: Increased incidence of Parkinson disease among relatives of patients with Gaucher disease. Blood Cells Mol Dis 2006, 36:426–428.

    Article  PubMed  Google Scholar 

  16. Goker-Alpan O, Giasson BI, Eblan MJ, et al.: Glucocerebrosidase mutations are an important risk factor for Lewy body disorders. Neurology 2006, 67:908–910.

    Article  CAS  PubMed  Google Scholar 

  17. Tayebi N, Callahan M, Madike V, et al.: Gaucher disease and parkinsonism: a phenotypic and genotypic characterization. Mol Genet Metab 2001, 73:313–321.

    Article  CAS  PubMed  Google Scholar 

  18. Tayebi N, Walker J, Stubblefield B, et al.: Gaucher disease with parkinsonian manifestations: does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Mol Genet Metab 2003, 79:104–109.

    Article  CAS  PubMed  Google Scholar 

  19. Lwin A, Orvisky E, Goker-Alpan O, et al.: Glucocerebrosidase mutations in subjects with parkinsonism. Mol Genet Metab 2004, 81(1):70–73.

    Article  CAS  PubMed  Google Scholar 

  20. Park JK, Tayebi N, Stubblefield BK, et al.: The E326K mutation and Gaucher disease: mutation or polymorphism? Clin Genet 2002, 61(1):32–34.

    Article  CAS  PubMed  Google Scholar 

  21. Aharon-Peretz J, Rosenbaum H, Gershoni-Baruch R: Mutations in the glucocerebrosidase gene and Parkinson’s disease in Ashkenazi Jews. N Engl J Med 2004, 351(19):1972–1977.

    Article  CAS  PubMed  Google Scholar 

  22. Sato C, Morgan A, Lang AE, et al.: Analysis of the glucocerebrosidase gene in Parkinson’s disease. Mov Disord 2005, 20(3):367–370.

    Article  PubMed  Google Scholar 

  23. Toft M, Pielsticker L, Ross OA, et al.: Glucocerebrosidase gene mutations and Parkinson disease in the Norwegian population. Neurology 2006, 66(3):415–417.

    Article  CAS  PubMed  Google Scholar 

  24. Eblan MJ, Nguyen J, Ziegler SG, et al.: Glucocerebrosidase mutations are also found in subjects with early-onset parkinsonism from Venezuela. Mov Disord 2006, 21(2):282–283.

    Article  PubMed  Google Scholar 

  25. Tan EK, Tong J, Fook-Chong S, et al.: Glucocerebrosidase mutations and risk of Parkinson disease in Chinese patients. Arch Neurol 2007, 64(7):1056–1058.

    Article  PubMed  Google Scholar 

  26. Ziegler SG, Eblan MJ, Gutti U, et al.: Glucocerebrosidase mutations in Chinese subjects from Taiwan with sporadic Parkinson disease. Mol Genet Metab 2007, 91(2):195–200.

    Article  CAS  PubMed  Google Scholar 

  27. Clark LN, Ross BM, Wang Y, et al.: Mutations in the glucocerebrosidase gene are associated with early-onset Parkinson disease. Neurology 2007, 69(12):1270–1277.

    Article  CAS  PubMed  Google Scholar 

  28. Wu YR, Chen CM, Chao CY, et al.: Glucocerebrosidase gene mutation is a risk factor for early onset of Parkinson disease among Taiwanese. J Neurol Neurosurg Psychiatry 2007, 78(9):977–979.

    Article  PubMed  Google Scholar 

  29. • Gan-Or Z, Giladi N, Rozovski U, et al.: Genotype-phenotype correlations between GBA mutations and Parkinson disease risk and onset. Neurology 2008, 70(24):2277–2283. This study included the largest cohort of Ashkenazi Jewish subjects with parkinsonism screened for GBA mutations.

  30. Spitz M, Rozenberg R, Pereira Lda V, Reis Barbosa E: Association between Parkinson’s disease and glucocerebrosidase mutations in Brazil. Parkinsonism Relat Disord 2008, 14(1):58–62.

    Article  PubMed  Google Scholar 

  31. • Neumann J, Bras J, Deas E, et al.: Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 2009, 132(Pt 7):1783–1794. The authors sequenced the GBA gene in a large series of brains from subjects with PD as well as controls. They identified mutations in 4.2% of patients versus 1.2% of controls.

  32. Nichols WC, Pankratz N, Marek DK, et al.; Parkinson Study Group-PROGENI Investigators: Mutations in GBA are associated with familial Parkinson disease susceptibility and age at onset. Neurology 2009, 72(4):310–316.

    Article  CAS  PubMed  Google Scholar 

  33. Kalinderi K, Bostantjopoulou S, Paisan-Ruiz C, et al.: Complete screening for glucocerebrosidase mutations in Parkinson disease patients from Greece. Neurosci Lett 2009, 452(2):87–89.

    Article  CAS  PubMed  Google Scholar 

  34. • Mitsui J, Mizuta I, Toyoda A, et al.: Mutations for Gaucher disease confer high susceptibility to Parkinson disease. Arch Neurol 2009, 66(5):571–576. This study, conducted in Japan, demonstrates that in this cohort, GBA mutations are encountered frequently in subjects with PD. The spectrum of mutations, however, differed from cohorts of other ethnicities.

  35. Bras J, Paisan-Ruiz C, Guerreiro R, et al.: Complete screening for glucocerebrosidase mutations in Parkinson disease patients from Portugal. Neurobiol Aging 2009, 30(9):1515–1517.

    Article  CAS  PubMed  Google Scholar 

  36. •• Sidransky E, Nalls MA, Aasly JO, et al.: Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 2009, 361:1651–1661. This multicenter international collaborative study combined the results from 16 different centers in four continents. Studying more than 5000 patients and an equal number of controls, the authors demonstrated that the odds ratio for carrying a GBA mutation in patients with PD was greater than 5.

  37. Gutti U, Fung HC, Hruska KS, et al.: The need for appropriate genotyping strategies for glucocerebrosidase mutations in cohorts with Parkinson disease. Arch Neurol 2008, 65:850–851.

    Article  PubMed  Google Scholar 

  38. Wan L, Hsu CM, Tsai CH, et al.: Mutation analysis of Gaucher disease patients in Taiwan: high prevalence of the RecNciI and L444P mutations. Blood Cells Mol Dis 2006, 36:422–425.

    Article  CAS  PubMed  Google Scholar 

  39. McKeith IG, Dickson DW, Lowe J, et al.: Consortium on DLB. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005, 65:1863–1872.

    Article  CAS  PubMed  Google Scholar 

  40. Wenning GK, Jellinger KA: The role of alpha-synuclein in the pathogenesis of multiple system atrophy. Acta Neuropathol 2005, 109:129–140.

    Article  CAS  PubMed  Google Scholar 

  41. Mata IF, Samii A, Schneer SH, et al.: Glucocerebrosidase gene mutations: a risk factor for Lewy body disorders. Arch Neurol 2008, 65:379–382.

    Article  PubMed  Google Scholar 

  42. Farrer MJ, Williams LN, Algom AA, et al.: Glucosidase-beta variations and Lewy body disorders. Parkinsonism Relat Disord 2009, 15:414–416.

    Article  PubMed  Google Scholar 

  43. Clark LN, Kartsaklis LA, Wolf Gilbert R, et al.: Association of glucocerebrosidase mutations with dementia with lewy bodies. Arch Neurol 2009, 66:578–583.

    Article  PubMed  Google Scholar 

  44. Segarane B, Li A, Paudel R, et al.: Glucocerebrosidase mutations in 108 neuropathologically confirmed cases of multiple system atrophy. Neurology 2009, 72:1185–1186.

    Article  CAS  PubMed  Google Scholar 

  45. Jamrozik Z, Lugowska A, Slawek J, Kwiecinski H: Glucocerebrosidase mutations p.L444P and p.N370S are not associated with multisystem atrophy, progressive supranuclear palsy and corticobasal degeneration in Polish patients. J Neurol 2009 Nov 1 (Epub ahead of print).

  46. Bembi B, Zambito Marsala S, Sidransky E, et al.: Gaucher’s disease with Parkinson’s disease: clinical and pathological aspects. Neurology 2003, 61:99–101.

    CAS  PubMed  Google Scholar 

  47. Wong K, Sidransky E, Verma A, et al.: Neuropathology provides clues to the pathophysiology of Gaucher disease. Mol Genet Metab 2004, 82:192–207.

    Article  CAS  PubMed  Google Scholar 

  48. Kono S, Shirakawa K, Ouchi Y, et al.: Dopaminergic neuronal dysfunction associated with parkinsonism in both a Gaucher disease patient and a carrier. J Neurol Sci 2007, 252:181–184.

    Article  CAS  PubMed  Google Scholar 

  49. Goker-Alpan O, Lopez G, Vithayathil J, et al.: The spectrum of parkinsonian manifestations associated with glucocerebrosidase mutations. Arch Neurol 2008, 65:1353–1357.

    Article  PubMed  Google Scholar 

  50. Gan-Or Z, Giladi N, Orr-Urtreger A: Differential phenotype in Parkinson’s disease patients with severe versus mild GBA mutations. Brain 2009, 132:e125.

    Article  CAS  PubMed  Google Scholar 

  51. Hardy J, Lewis P, Revesz T, et al.: The genetics of Parkinson’s syndromes: a critical review. Curr Opin Genet Dev 2009, 19:254–265.

    Article  CAS  PubMed  Google Scholar 

  52. Bras J, Singleton A, Cookson MR, Hardy J: Emerging pathways in genetic Parkinson’s disease: potential role of ceramide metabolism in Lewy body disease. FEBS J 2008, 275:5767–5773.

    Article  CAS  PubMed  Google Scholar 

  53. Conradi NG, Sourander P, Nilsson O, et al.: Neuropathology of the Norrbottnian type of Gaucher disease. Morphological and biochemical studies. Acta Neuropathol 1984, 65:99–109.

    Article  CAS  PubMed  Google Scholar 

  54. Jo E, McLaurin J, Yip CM, et al.: alpha-Synuclein membrane interactions and lipid specificity. J Biol Chem 2000, 275:34328–34334.

    Article  CAS  PubMed  Google Scholar 

  55. Schlossmacher MG, Cullen V, Müthing J: The glucocerebrosidase gene and Parkinson’s disease in Ashkenazi Jews. N Engl J Med 2005, 352:728–731.

    Article  PubMed  Google Scholar 

  56. Simons K, Gruenberg J: Jamming the endosomal system: lipid rafts and lysosomal storage diseases. Trends Cell Biol 2000, 10:459–462.

    Article  CAS  PubMed  Google Scholar 

  57. Martinez Z, Zhu M, Han S, Fink AL: GM1 specifically interacts with alpha-synuclein and inhibits fibrillation. Biochemistry 2007, 46:1868–1877.

    Article  CAS  PubMed  Google Scholar 

  58. Sharon R, Bar-Joseph I, Frosch MP, et al.: The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron 2003, 37:583–595.

    Article  CAS  PubMed  Google Scholar 

  59. Manning-Boğ AB, Schüle B, Langston JW: Alpha-synuclein-glucocerebrosidase interactions in pharmacological Gaucher models: a biological link between Gaucher disease and parkinsonism. Neurotoxicology 2009, 30(6):1127–1132.

    Article  PubMed  Google Scholar 

  60. Sawkar AR, Adamski-Werner SL, Cheng WC, et al.: Gaucher disease-associated glucocerebrosidases show mutation-dependent chemical chaperoning profiles. Chem Biol 2005, 12:1235–1244.

    Article  CAS  PubMed  Google Scholar 

  61. de Duve C: From cytases to lysosomes. Fed Proc 1964, 23:1045–1049.

    Google Scholar 

  62. Essner E, Novikoff AB: Localization of acid phosphatase activity in hepatic lysosomes by means of electron microscopy. J Biophys Biochem Cytol 1961, 9:773–784.

    Article  CAS  PubMed  Google Scholar 

  63. Ramirez A, Heimbach A, Grundemann J, et al.: Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 2006, 38:1184–1191.

    Article  CAS  PubMed  Google Scholar 

  64. Di Fonzo A, Chien HF, Socal M, et al.: ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology 2007, 68:1557–1562.

    Article  PubMed  Google Scholar 

  65. Cuervo AM, Stefanis L, Fredenburg R, et al.: Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 2004, 305:1292–1295.

    Article  CAS  PubMed  Google Scholar 

  66. Martinez-Vicente M, Talloczy Z, Kaushik S, et al.: Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 2008, 118:777–788.

    CAS  PubMed  Google Scholar 

  67. Klionsky DJ, Emr SD: Autophagy as a regulated pathway of cellular degradation. Science 2000, 290:1717–1721.

    Article  CAS  PubMed  Google Scholar 

  68. Sou YS, Tanida I, Komatsu M, et al.: Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16. J Biol Chem 2006, 281:3017–3024.

    Article  CAS  PubMed  Google Scholar 

  69. Webb JL, Ravikumar B, Atkins J, et al.: Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 2003, 278:25009–25013.

    Article  CAS  PubMed  Google Scholar 

  70. Yu WH, Dorado B, Figueroa HY, et al.: Metabolic activity determines efficacy of macroautophagic clearance of pathological oligomeric alpha-synuclein. Am J Pathol 2009, 175:736–747.

    Article  CAS  PubMed  Google Scholar 

  71. Spencer B, Potkar R, Trejo M, et al.: Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci 2009, 29:13578–13588.

    Article  CAS  PubMed  Google Scholar 

  72. Hara T, Nakamura K, Matsui M, et al.: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006, 441:885–889.

    Article  CAS  PubMed  Google Scholar 

  73. Komatsu M, Waguri S, Chiba T, et al.: Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006, 441:880–884.

    Article  CAS  PubMed  Google Scholar 

  74. Singh R, Kaushik S, Wang Y, et al.: Autophagy regulates lipid metabolism. Nature 2009, 458:1131–1135.

    Article  CAS  PubMed  Google Scholar 

  75. Scarlatti F, Bauvy C, Ventruti A, et al.: Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J Biol Chem 2004, 279:18384–18391.

    Article  CAS  PubMed  Google Scholar 

  76. Dawson TM: Parkin and defective ubiquitination in Parkinson’s disease. J Neural Transm Suppl 2006, 70:209–213.

    Article  CAS  PubMed  Google Scholar 

  77. Ron I, Horowitz M: ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Hum Mol Genet 2005, 14:2387–2398.

    Article  CAS  PubMed  Google Scholar 

  78. Horowitz M, Ron I: Interaction between parkin and glucocerebrosidase: a possible link between Parkinson disease and Gaucher disease. Mol Genet Metab 2009, 96:S27.

    Article  Google Scholar 

  79. Clark LN, Nicolai A, Afridi S, et al.: Pilot association study of the beta-glucocerebrosidase N370S allele and Parkinson’s disease in subjects of Jewish ethnicity. Mov Disord 2005, 20:100–103.

    Article  PubMed  Google Scholar 

  80. De Marco EV, Annesi G, Tarantino P, et al.: Glucocerebrosidase gene mutations are associated with Parkinson’s disease in southern Italy. Mov Disord 2008, 23:460–463.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Programs of the National Human Genome Research Institute and the National Institutes of Health. The authors thank Dr. Nahid Tayebi, Dr. Grisel Lopez, Dr. Ehud Goldin, Sarah Klontz, and Jae H. Choi for their critical reading of the manuscript.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Sidransky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velayati, A., Yu, W.H. & Sidransky, E. The Role of Glucocerebrosidase Mutations in Parkinson Disease and Lewy Body Disorders. Curr Neurol Neurosci Rep 10, 190–198 (2010). https://doi.org/10.1007/s11910-010-0102-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-010-0102-x

Keywords

Navigation