Skip to main content

Advertisement

Log in

Enteric Nervous System in the Small Intestine: Pathophysiology and Clinical Implications

  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

The digestive system is endowed with its own, local nervous system, referred to as the enteric nervous system (ENS). Given the varied functions of small intestine, its ENS has developed individualized characteristics relating to motility, secretion, digestion, and inflammation. The ENS regulates the major enteric processes such as immune response, detecting nutrients, motility, microvascular circulation, intestinal barrier function, and epithelial secretion of fluids, ions, and bioactive peptides. Remarkable progress has been made in understanding the signaling pathways in this complex system and how they work. In this article, we focus on recent advances that have led to new insights into small intestinal ENS function and the development of new therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gershon MD: The Second Brain: A Groundbreaking New Understanding of Nervous Disorders of the Stomach and Intestine. New York: HarperCollins; 1999.

    Google Scholar 

  2. •• Liu MT, Kuan YH, Wang J, et al.: 5-HT4 receptor-mediated neuroprotection and neurogenesis in the enteric nervous system of adult mice. J Neurosci 2009, 29:9683–9699. This article reports that stimulation of the 5-HT 4 receptor is required postnatally for ENS growth and maintenance, and demonstrates for the first time the adult enteric neurogenesis in mice.

    Article  CAS  PubMed  Google Scholar 

  3. Burns AJ, Thapar N: Advances in ontogeny of the enteric nervous system. Neurogastroenterol Motil 2006, 18:876–887.

    Article  CAS  PubMed  Google Scholar 

  4. Gianino S, Grider JR, Cresswell J, et al.: GDNF availability determines enteric neuron number by controlling precursor proliferation. Development 2003, 130:2187–2198.

    Article  CAS  PubMed  Google Scholar 

  5. Srinivasan S, Anitha M, Mwangi S, Heuckeroth RO: Enteric neuroblasts require the phosphatidylinositol 3-kinase/Akt/Forkhead pathway for GDNF-stimulated survival. Mol Cell Neurosci 2005, 29:107–119.

    Article  CAS  PubMed  Google Scholar 

  6. Phillips RJ, Kieffer EJ, Powley TL: Aging of the myenteric plexus: neuronal loss is specific to cholinergic neurons. Auton Neurosci 2003, 106:69–83.

    Article  PubMed  Google Scholar 

  7. Johnson RJ, Schemann M, Santer RM, Cowen T: The effects of age on the overall population and on sub-populations of myenteric neurons in the rat small intestine. J Anat 1998, 192 (Pt 4):479–488.

    Article  PubMed  Google Scholar 

  8. Kasparek MS, Fatima J, Iqbal CW, et al.: Age-related changes in functional NANC innervation with VIP and substance P in the jejunum of Lewis rats. Auton Neurosci 2009, 151:127–134.

    Article  CAS  PubMed  Google Scholar 

  9. Saffrey MJ: Ageing of the enteric nervous system. Mech Ageing Dev 2004, 125:899–906.

    Article  CAS  PubMed  Google Scholar 

  10. Penagini R, Spiller RC, Misiewicz JJ, Frost PG: Effect of ileal infusion of glycochenodeoxycholic acid on segmental transit, motility, and flow in the human jejunum and ileum. Gut 1989, 30:609–617.

    Article  CAS  PubMed  Google Scholar 

  11. •• Poole DP, Godfrey C, Cattaruzza F, et al.: Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system. Neurogastroenterol Motil 2010, 22:814–825, e227–818. This article studies the mechanism of action of bile acids on enteric motility and secretion. The authors found that human bile acid receptor 1 (GpBAR1) is expressed in enteric neurons, and its activation on inhibitory motor neurons releases nitric oxide and suppresses motility.

    Article  CAS  PubMed  Google Scholar 

  12. Pham T, Guerrini S, Wong H, et al.: Distribution of galanin receptor 1 immunoreactivity in the rat stomach and small intestine. J Comp Neurol 2002, 450:292–302.

    Article  CAS  PubMed  Google Scholar 

  13. Simpson J, Sundler F, Humes DJ, et al.: Prolonged elevation of galanin and tachykinin expression in mucosal and myenteric enteric nerves in trinitrobenzene sulphonic acid colitis. Neurogastroenterol Motil 2008, 20:392–406.

    Article  CAS  PubMed  Google Scholar 

  14. Kalff JC, Carlos TM, Schraut WH, et al.: Surgically induced leukocytic infiltrates within the rat intestinal muscularis mediate postoperative ileus. Gastroenterology 1999, 117:378–387.

    Article  CAS  PubMed  Google Scholar 

  15. Schwarz NT, Kalff JC, Turler A, et al.: Prostanoid production via COX-2 as a causative mechanism of rodent postoperative ileus. Gastroenterology 2001, 121:1354–1371.

    Article  CAS  PubMed  Google Scholar 

  16. • Wattchow DA, De Fontgalland D, Bampton PA, et al.: Clinical trial: the impact of cyclooxygenase inhibitors on gastrointestinal recovery after major surgery—a randomized double blind controlled trial of celecoxib or diclofenac vs. placebo. Aliment Pharmacol Ther 2009, 30:987–998. This recent clinical trial demonstrates that celecoxib, but not diclofenac, reduced the development of ileus, but neither agent accelerated early recovery of normal bowel motility.

    Article  CAS  PubMed  Google Scholar 

  17. Kadowaki M, Nagakura Y, Tokita K, et al.: Adenosine A1 receptor blockade reverses experimental postoperative ileus in rat colon. Eur J Pharmacol 2003, 458:197–200.

    Article  CAS  PubMed  Google Scholar 

  18. Antonioli L, Fornai M, Colucci R, et al.: Regulation of enteric functions by adenosine: pathophysiological and pharmacological implications. Pharmacol Ther 2008, 120:233–253.

    Article  CAS  PubMed  Google Scholar 

  19. Anitha M, Gondha C, Sutliff R, et al.: GDNF rescues hyperglycemia-induced diabetic enteric neuropathy through activation of the PI3K/Akt pathway. J Clin Invest 2006, 116:344–356.

    Article  CAS  PubMed  Google Scholar 

  20. Ordog T: Interstitial cells of Cajal in diabetic gastroenteropathy. Neurogastroenterol Motil 2008, 20:8–18.

    Article  CAS  PubMed  Google Scholar 

  21. Russell JW, Sullivan KA, Windebank AJ, et al.: Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol Dis 1999, 6:347–363.

    Article  CAS  PubMed  Google Scholar 

  22. Moriyama R, Tsukamura H, Kinoshita M, et al.: In vitro increase in intracellular calcium concentrations induced by low or high extracellular glucose levels in ependymocytes and serotonergic neurons of the rat lower brainstem. Endocrinology 2004, 145:2507–2515.

    Article  CAS  PubMed  Google Scholar 

  23. • Izbeki F, Wittman T, Rosztoczy A, et al.: Immediate insulin treatment prevents gut motility alterations and loss of nitrergic neurons in the ileum and colon of rats with streptozotocin-induced diabetes. Diabetes Res Clin Pract 2008, 80:192–198. This article shows that the nitrergic neurons located in different intestinal segments exhibit different susceptibilities to a diabetic state, and that early insulin treatment prevented the nitrergic cell loss in the ileum and colon.

    Article  CAS  PubMed  Google Scholar 

  24. Anitha M, Chandrasekharan B, Salgado JR, et al.: Glial-derived neurotrophic factor modulates enteric neuronal survival and proliferation through neuropeptide Y. Gastroenterology 2006, 131:1164–1178.

    Article  CAS  PubMed  Google Scholar 

  25. Adeghate E, Ponery AS, Sharma AK, et al.: Diabetes mellitus is associated with a decrease in vasoactive intestinal polypeptide content of gastrointestinal tract of rat. Arch Physiol Biochem 2001, 109:246–251.

    Article  CAS  PubMed  Google Scholar 

  26. Pfeiffer RF: Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol 2003, 2:107–116.

    Article  PubMed  Google Scholar 

  27. Braak H, de Vos RA, Bohl J, Del Tredici K: Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 2006, 396:67–72.

    Article  CAS  PubMed  Google Scholar 

  28. Anderson G, Noorian AR, Taylor G, et al.: Loss of enteric dopaminergic neurons and associated changes in colon motility in an MPTP mouse model of Parkinson’s disease. Exp Neurol 2007, 207:4–12.

    Article  CAS  PubMed  Google Scholar 

  29. Greene JG, Noorian AR, Srinivasan S: Delayed gastric emptying and enteric nervous system dysfunction in the rotenone model of Parkinson’s disease. Exp Neurol 2009, 218:154–161.

    Article  CAS  PubMed  Google Scholar 

  30. • Bielefeldt K, Davis B, Binion DG: Pain and inflammatory bowel disease. Inflamm Bowel Dis 2009, 15:778–788. This recent article extensively reviews the current knowledge about mechanisms of abdominal pain in IBD.

    Article  PubMed  Google Scholar 

  31. Wright K, Rooney N, Feeney M, et al.: Differential expression of cannabinoid receptors in the human colon: cannabinoids promote epithelial wound healing. Gastroenterology 2005, 129:437–453.

    PubMed  Google Scholar 

  32. McLean PG, Borman RA, Lee K: 5-HT in the enteric nervous system: gut function and neuropharmacology. Trends Neurosci 2007, 30:9–13.

    Article  CAS  PubMed  Google Scholar 

  33. Sawynok J, Liu XJ: Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol 2003, 69:313–340.

    Article  CAS  PubMed  Google Scholar 

  34. Delafoy L, Gelot A, Ardid D, et al.: Interactive involvement of brain derived neurotrophic factor, nerve growth factor, and calcitonin gene related peptide in colonic hypersensitivity in the rat. Gut 2006, 55:940–945.

    Article  CAS  PubMed  Google Scholar 

  35. Buhner S, Li Q, Vignali S, et al.: Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology 2009, 137:1425–1434.

    Article  CAS  PubMed  Google Scholar 

  36. • Camilleri M, Carlson P, Zinsmeister AR, et al.: Mitochondrial DNA and gastrointestinal motor and sensory functions in health and functional gastrointestinal disorders. Am J Physiol Gastrointest Liver Physiol 2009, 296:G510–G516. This recent article describes the role of mitochondrial DNA polymorphisms in development of IBS. The authors suggest a possible association between mitochondrial DNA variation and some IBS-related symptoms.

    Article  CAS  PubMed  Google Scholar 

  37. • Anderson JL, May HT, Bair TL, et al.: Lack of association of tegaserod with adverse cardiovascular outcomes in a matched case-control study. J Cardiovasc Pharmacol Ther 2009, 14:170–175. The authors performed a large-scale study on adverse effects of tegaserod, and found no increase in cardiovascular events in 2.5 years of follow-up compared to untreated patients. These results question the previous observations that led to withdrawal of this drug in 2007.

    Article  CAS  PubMed  Google Scholar 

  38. Camilleri M, McKinzie S, Fox J, et al.: Effect of renzapride on transit in constipation-predominant irritable bowel syndrome. Clin Gastroenterol Hepatol 2004, 2:895–904.

    Article  CAS  PubMed  Google Scholar 

  39. Kawano K, Mori T, Fu L, et al.: Comparison between partial agonist (ME3412) and antagonist (alosetron) of 5-hydroxytryptamine 3 receptor on gastrointestinal function. Neurogastroenterol Motil 2005, 17:290–301.

    Article  CAS  PubMed  Google Scholar 

  40. Bryant AP, Busby RW, Bartolini WP, et al.: Linaclotide is a potent and selective guanylate cyclase C agonist that elicits pharmacological effects locally in the gastrointestinal tract. Life Sci 86:760–765

  41. • Hellström PM: GLP-1 playing the role of a gut regulatory compound. Acta Physiol (Oxf) 2010 (Epub ahead of print). This randomized, double-blind clinical trial investigates the effect of GLP-1 analogue ROSE-010 in humans, and shows that ROSE-010 is effective in pain relief response in IBS patients affected by pain attacks.

  42. • Akbar A, Walters JR, Ghosh S: Review article: visceral hypersensitivity in irritable bowel syndrome: molecular mechanisms and therapeutic agents. Aliment Pharmacol Ther 2009, 30:423–435. This review provides a useful insight into the new molecular concepts emerging in the field of visceral hypersensitivity.

    Article  CAS  PubMed  Google Scholar 

  43. Xu GY, Winston JH, Shenoy M, et al.: The endogenous hydrogen sulfide producing enzyme cystathionine-beta synthase contributes to visceral hypersensitivity in a rat model of irritable bowel syndrome. Mol Pain 2009, 5:44.

    Article  PubMed  Google Scholar 

  44. • Gallego D, Clave P, Donovan J, et al.: The gaseous mediator, hydrogen sulphide, inhibits in vitro motor patterns in the human, rat and mouse colon and jejunum. Neurogastroenterol Motil 2008, 20:1306–1316. This article describes the emerging gastric motility properties of the gaseous mediator H 2 S. H 2 S is implicated as an agent both preventing and causing tissue damage and inflammation.

    Article  CAS  PubMed  Google Scholar 

  45. Cooke HJ: Neurotransmitters in neuronal reflexes regulating intestinal secretion. Ann N Y Acad Sci 2000, 915:77–80.

    Article  CAS  PubMed  Google Scholar 

  46. Gwynne RM, Ellis M, Sjovall H, Bornstein JC: Cholera toxin induces sustained hyperexcitability in submucosal secretomotor neurons in guinea pig jejunum. Gastroenterology 2009, 136:299–308 e294.

    Google Scholar 

  47. Vasina V, Barbara G, Talamonti L, et al.: Enteric neuroplasticity evoked by inflammation. Auton Neurosci 2006, 126–127:264–272.

    Article  PubMed  Google Scholar 

  48. •• Keohane J, O’Mahony C, O’Mahony L, et al.: Irritable bowel syndrome-type symptoms in patients with inflammatory bowel disease: a real association or reflection of occult inflammation? Am J Gastroenterol 2010 (Epub ahead of print). This article suggests that although IBS-like symptoms are common in patients with IBD, the mechanism in most cases is likely to be occult inflammation rather than coexistent IBS.

  49. Okajima K, Harada N: Regulation of inflammatory responses by sensory neurons: molecular mechanism(s) and possible therapeutic applications. Curr Med Chem 2006, 13:2241–2251.

    Article  CAS  PubMed  Google Scholar 

  50. Alavi K, Schwartz MZ, Palazzo JP, Prasad R: Treatment of inflammatory bowel disease in a rodent model with the intestinal growth factor glucagon-like peptide-2. J Pediatr Surg 2000, 35:847–851.

    Article  CAS  PubMed  Google Scholar 

  51. Villanacci V, Bassotti G, Nascimbeni R, et al.: Enteric nervous system abnormalities in inflammatory bowel diseases. Neurogastroenterol Motil 2008, 20:1009–1016.

    Article  CAS  PubMed  Google Scholar 

  52. Cabarrocas J, Savidge TC, Liblau RS: Role of enteric glial cells in inflammatory bowel disease. Glia 2003, 41:81–93.

    Article  PubMed  Google Scholar 

  53. Porcher C, Baldo M, Henry M, et al.: Deficiency of interstitial cells of Cajal in the small intestine of patients with Crohn's disease. Am J Gastroenterol 2002, 97:118–125.

    Article  PubMed  Google Scholar 

  54. • Takami Y, Mantyh CR, Pappas TN, et al.: Extrinsic surgical denervation ameliorates TNBS-induced colitis in rats. Hepatogastroenterology 2009, 56:682–686. This interesting article extensively challenges the neurogenic inflammation concept by performing surgical denervation of specific sensorimotor neurons in an animal model of colitis. The authors report that surgically denervated animals showed almost no sign of inflammation after inducing colitis.

    PubMed  Google Scholar 

  55. Hassani H, Lucas G, Rozell B, Ernfors P: Attenuation of acute experimental colitis by preventing NPY Y1 receptor signaling. Am J Physiol Gastrointest Liver Physiol 2005, 288:G550–G556.

    Article  CAS  PubMed  Google Scholar 

  56. Chandrasekharan B, Bala V, Kolachala VL, et al.: Targeted deletion of neuropeptide Y (NPY) modulates experimental colitis. PLoS One 2008, 3:e3304.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the following grants: National Institutes of Health DK080684 (Dr. Srinivasan) and Veterans Administration Merit award (Dr. Srinivasan).

Disclosure

No potential conflict of interest relevant to this article was reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanthi Srinivasan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nezami, B.G., Srinivasan, S. Enteric Nervous System in the Small Intestine: Pathophysiology and Clinical Implications. Curr Gastroenterol Rep 12, 358–365 (2010). https://doi.org/10.1007/s11894-010-0129-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11894-010-0129-9

Keywords

Navigation