Skip to main content
Log in

Solvothermal and hydrothermal processes: the main physico-chemical factors involved and new trends

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Hydro- and solvothermal processes play an important role in the different scientific domains involving either basic or applied research. During the last years, such processes have been strongly developed, in particular with the elaboration of nanocrystallites. This review article presents a brief history of their development, an analysis of the key factors governing such processes, and the recent trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Richet, in Une courte histoire de la pression “dans” La Pression: un outil pour les Sciences, ed. by J.C. Chervin ET, J. Peyronneau (Editions du CNRS, 2003), p. 7

  2. T. Andrews, Phil. Trans. Roy. Soc. (London) 176, 421 (1876)

    Google Scholar 

  3. E.C. Amagat, Compt. Rend. 114, 1093 (1892)

    Google Scholar 

  4. L. Cailletet, E. Mathias, Compt. Rend. 102, 1202–1207 (1886)

    Google Scholar 

  5. H.P. Eugster, Am. Miner. 71, 655 (1986)

    CAS  Google Scholar 

  6. F. Habashi, The origins of hydrothermal reactions. Rev. High Press. Sci. Technol. 7, 1401–1404 (1998)

    CAS  Google Scholar 

  7. R.C.M. Mambote, M.A. Reuter, P. Krijgsman, R.D. Schuiling, Hydrothermal metallurgy: an overview of basic concepts and applications. Miner. Eng. 13, 803–822 (2000)

    CAS  Google Scholar 

  8. V. Ipatiev, O. Rutala, Berichte 46, 1748 (1913)

    Google Scholar 

  9. P. Regnard, Recherches expérimentales sur l’influence des très hautes pressions sur les organismes vivants. Compt. Rend. 96, 745–747 (1884)

    Google Scholar 

  10. A. Certes, De l’action des hautes pressions sur les phénomènes de putréfaction et sur la vitalité des micro-organismes d’eau douce et d’eau de mer. Compt. Rend. 99, 385–388 (1884)

    Google Scholar 

  11. H. Roger, Action des Hautes pressions sur quelques bactéries. C. R. Acad. Sci. 114, 963–965 (1892)

  12. B.H. Hite, The effect of pressure in the preservation of milk (West Virginia Agricultural Experiment Station, Morgantown, West Virginia, 1899), Bulletin 58

  13. H. de Senarmont, Annales de Chimie et de Physique, 3ième Série (1951), p. 129

  14. A. Daubree, Etudes Synthétiques de Géologie Expérimentale DUNOD Ed PARIS (1879), 828 pp.

  15. C. Friedel, E. Sarasin, Soc. Miner. Bull. 2, 158 (1879)

    Google Scholar 

  16. K.F.E. Schafhäutl, Gelehrte Anziegen Bayer Akad. 20, 557, 561, 569, 593 (1845)

  17. R. Bunsen, Poggendorf’s Ann. 46, 97 (1839)

    Google Scholar 

  18. R. Bunsen, Annalen 65, 70 (1848)

    Google Scholar 

  19. K. Von Chrustoff, Bull. Soc. Min. 10, 31–36 (1887)

    Google Scholar 

  20. C. Doelter, Allgemeine Chemische Mineralogie (Verlag von Wilhelm Engelmann, Leipzig, 1890)

    Google Scholar 

  21. G. Spezia, Atti. Acad. Sci (Torino) 33, 157 (1898)

    Google Scholar 

  22. G. Spezia, Atti. Acad. Sci (Torino) 40, 254–255 (1905)

    Google Scholar 

  23. G. Spezia, Atti. Acad. Sci (Torino) 41, 158 (1906)

    Google Scholar 

  24. R. Nacken, Chemiker-Ztg. Jahrg 74(No. 50), 745–749 (1950)

  25. R. Nacken, Technische Mitteilungen. Jahrg Haft 4/46, 87 (1953)

  26. A.C. Walker, Hydrothermal synthesis of quartz crystal. J. Am. Ceram. Soc. 36, 250–256 (1953)

    CAS  Google Scholar 

  27. N. Wooster, W.A. Wooster, Preparation of synthetic quartz. Nature 157, 297 (1946)

    CAS  Google Scholar 

  28. C.S. Brown, R.C. Kell, L.A. Thomas, N. Wooster, W.A. Wooster, Miner. Magn. 29, 858 (1952)

    CAS  Google Scholar 

  29. D.R. Hale, The laboratory growing of quartz. Science 107, 393–394 (1948)

    CAS  Google Scholar 

  30. E. Buehler, A.C. Walker, Growing quartz crystals. Sci. Monthly 69, 148–155 (1949)

    CAS  Google Scholar 

  31. F. Iwasaki, H. Iwasaki, Historical review of quartz crystal growth. J. Cryst. Growth 237–239, 820–827 (2002)

    Google Scholar 

  32. S. Taki, M. Kunitomi, J. Asahara, T. Ozawa, Kogyo Kagaku Zasshi 59, 1337 (1956)

    CAS  Google Scholar 

  33. K. Moriya, T. Ogawa, Growth history of a synthetic quartz crystal. J. Cryst. Growth 58, 115–121 (1982)

    CAS  Google Scholar 

  34. T. Katsurai, Sci. Pap. Inst. Phys. Chem. Res. 5, 635 (1926)

    Google Scholar 

  35. S. Nagai, Kogyo Kagaku Zasshi 34, 619 (1931)

    Google Scholar 

  36. S. Yamasaki, T. Titani, On the vapour-phase hydrolysis. Bull. Chem. Soc. Jpn. 9, 501–504 (1934)

    CAS  Google Scholar 

  37. P. Niggli, G.N. Morey, Z. Anorg. Chem. 83, 369–416 (1913)

    Google Scholar 

  38. F.G. Straub, Analcite. Ind. Eng. Chem. 28, 113–114 (1936)

    CAS  Google Scholar 

  39. G.W. Morey, F.E. Ingerson, The pneumatolytic and hydrothermal alteration and synthesis of silicates. Econ. Geol. 32, 607–761 (1937)

    CAS  Google Scholar 

  40. R.W. Goranson, Silicate–water systems: phase equilibria in the NaAlSi3O8–H2O and KAlSi3O8–H2O systems at high temperatures and pressures. Am. J. Sci. 235A, 71–91 (1938)

    Google Scholar 

  41. R.M. Barrer, Factors governing the growth of crystalline silicates. Discuss. Faraday Soc. 5, 326–337 (1949)

    Google Scholar 

  42. R. Kiyoura, Hydrothermal decomposition of glass. J. Jpn Ceram. Assoc. 57, 66–67 (1949)

    CAS  Google Scholar 

  43. N.L. Bowen, O.F. Tuttle, The system NaAlSi3O8-KAlSi3O8–H2O. J. Geol. 58, 489–511 (1950)

    CAS  Google Scholar 

  44. R.M. Barrer, E.A.D. White. The hydrothermal Chemistry of Silicates. J. Chem. Soc. (London) part I, 1267–1278 (1951)

  45. R.M. Barrer, E.A.D. White. The hydrothermal chemistry of silicates, J. Chem. Soc. (London) part II, 1561–1571 (1952)

  46. R.M. Barrer, E.A.D. White. The hydrothermal chemistry of silicates. J. Chem. Soc. (London) part III, 1466–1475 (1953)

  47. G.C. Kennedy, Pressure-volume-temperature relations in water at elevated temperatures and pressures. Am. J. Sci. 248, 540–564 (1950)

    CAS  Google Scholar 

  48. Y. Otsubo, C. Kato, Nippon Kagaku Zasshi 73, 146 (1952)

    Google Scholar 

  49. M. Kunitomi, H. Saito, Kogyo Kagaku Zasshi 59, 1235 (1956)

    CAS  Google Scholar 

  50. R. Roy, E.F. Osborn, Some simple aids in the hydrothermal investigation of mineral systems. Econ. Geol. 47, 717–721 (1952)

    CAS  Google Scholar 

  51. E.J. Allen, J.L. Crenshaw, J. Johnston, E.S. Larsen, The mineral sulphides of iron, experiments on the formation of the iron sulphides. Am. J. Sci. 33, 169–236 (1912)

    CAS  Google Scholar 

  52. G.W. Morey, Hydrothermal synthesis. J. Am. Ceram. Soc. 36, 279 (1953)

    CAS  Google Scholar 

  53. F.H. Smith, I.H. Adams, in The Role of Hydrothermal Synthesis in Preparative Chemistry, vol. 24, ed. by A. Rabenau (Angewandte Chemie Int. Ed., 2003), pp. 1026–1040

  54. O.F. Tuttle, A new hydrothermal quenching apparatus. Am. J. Sci. 246, 628–635 (1948)

    Google Scholar 

  55. B.N. Litvin, D.A. Tules. Apparatus for Hydrothermal Synthesis and Growth of Single Crystals, in Hydrothermal Synthesis of Crystals (Nauka, Moscow, 1968), pp. 193–202 (in Russian)

  56. V.P. Butusov, L.V. Bryatov, Sov. Phys. Solid State 2, 670 (1957)

    Google Scholar 

  57. S. Somiya, R. Roy, Hydrothermal synthesis of fine powders. Bull. Mater. Sci. 23, 453–460 (2000)

    CAS  Google Scholar 

  58. R.Roy, O.F. Tuttle. Investigations under hydrothermal conditions. Phys. Chem. Earth 1, 138–180 (1956)

  59. W.S. Fyfe, Hydrothermal synthesis and determination of equilibrium between minerals in the sub-solidus region. J. Geol. 68, 553–566 (1960)

    Google Scholar 

  60. N. Yamasaki, K. Yanagisawa, M. Nishioka, S. Kanahara, A hydrothermal hot-pressing method: apparatus and application. J. Mater. Sci. Lett. 5, 355–356 (1986)

    Google Scholar 

  61. N. Yamasaki, Y. Yamasaki, K. Tohji, T. Hashida, K. Ioku, Hydrothermal dynamics on environmental problems using the aspects of earth science. J. Mater. Sci. 41, 1599–1604 (2006)

    CAS  Google Scholar 

  62. T. Endo, S. Kume, M. Shimada, M. Koizumi, Synthesis of potassium manganese oxides under hydrothermal conditions. Miner. Magn. 39, 559–563 (1974)

    CAS  Google Scholar 

  63. R.A. Laudise, J.W. Nielsen, Hydrothermal crystal growth. Solid State Phys. 12, 149–222 (1961)

    CAS  Google Scholar 

  64. S. Somiya, in Proceedings of the First International Symposium on Hydrothermal Reactions, 22–26 Mar 1982 (Gakujutsu Bunken Fukyu-Kai Tokyo Institute of Technology, Japan 1983)

  65. S. Somiya, Historical developments of hydrothermal works in Japan, especially in ceramic science. J. Mater. Sci. 41, 1307–1318 (2006)

    CAS  Google Scholar 

  66. M. Yoshimura, S. Kikugawa, S. Somiya, Preparation of alpha alumina fine powders by hydrothermal oxidation method. J. Jpn Soc. Powder Metall. 30, 207–210 (1983)

    CAS  Google Scholar 

  67. M. Yoshimura, P. Sujaridworakun, F. Koh, T. Fujiwara, D. Pongkao, A. Ahniyaz, Hydrothermal conversion of calcite crystals to hydroxyapatite. Mater. Sci. Eng. C 24, 521–525 (2004)

    Google Scholar 

  68. L.N. Demianets, Hydrothermal synthesis of new compounds. Prog. Cryst. Growth Charact. Mater. 21, 299–355 (1991)

    Google Scholar 

  69. L.N. Demianets, A.N. Lobachev, Hydrothermal synthesis of crystals. Kristall und Technik 14, 509–525 (2006)

    Google Scholar 

  70. W. Eitel (ed.), Silicate Science, Hydrothermal Silicate Systems, vol. IV (Academic Press, New York, 1966)

    Google Scholar 

  71. A. Rabenau, Methods for the study of hydrothermal crystallization. Phys. Chem. Earth 13–14, 361–374 (1981)

    Google Scholar 

  72. B. Ferrand, J. Geynet, D. Challeton, J. Daval, J.C. Joubert, Growth of epitaxial substituted garnet films by hydrothermal synthesis. Mat. Res. Bull. 9, 495–506 (1974)

    CAS  Google Scholar 

  73. M. Rault, G. Demazeau, J. Portier, J. Grannec, Sur deux nouveaux hydrofluorures de chrome et de gallium. Bull. Soc. Chim. N 1, 74–75 (1970)

    Google Scholar 

  74. G. Demazeau, P. Maestro, M. Pouchard, T. Plante, P. Hagenmuller, Sur un nouveau matériau pour l’enregistrement magnétique dérivé du dioxyde de chrome. Mat. Res. Bull. 16, 697–702 (1981)

    CAS  Google Scholar 

  75. K.P. Reis, A. Ramanan, M.S. Whittingham, Low temperature hydrothermal reduction of ammonium paratungstate. J. Solid State Chem. 91, 394–396 (1991)

    CAS  Google Scholar 

  76. S. Komarneni, E. Fregeau, E. Breval, R. Roy, Hydrothermal preparation of ultrafine ferrites and their sintering. J. Am. Ceram. Soc. 71, C26–C28 (1988)

    CAS  Google Scholar 

  77. N. Kumada, N. Kinomura, S. Komarneni, Microwave hydrothermal synthesis of ABi2O (A = Mg, Zn). Mat. Res. Bull. 33, 1411–1414 (1998)

    CAS  Google Scholar 

  78. R. Riman, W. Suchanek, M. Lencka, Hydrothermal crystallization of ceramics. Ann. Chim. Sci. Mat. 27, 15–36 (2002)

    CAS  Google Scholar 

  79. A. Purdy, Ammonothermal crystal growth of sulphide materials. Chem. Mater. 10, 692–694 (1998)

    CAS  Google Scholar 

  80. M. Inoue, M. Otsu, H. Kominami, T. Inui, Glycothermal synthesis of rare earth aluminum garnets. J. Alloys Compd. 226, 146–151 (1995)

    CAS  Google Scholar 

  81. T. You, G. Cao, X. Song, C. Fan, W. Zhao, Z. Yin, S. Sun, Alcohol-thermal synthesis of flowerlike hollow cobalt tungstate nanostructures. Mater. Lett. 62, 1169–1174 (2008)

    CAS  Google Scholar 

  82. G. Demazeau, O. Martel, M. Devalette, E. Verdon, Particular compositions of rare earth oxides their preparation and their use. European Patent sep 1987, EP. 238367

  83. Th. Dubois, G. Demazeau, Solvothermal synthesis of Fe3O4 microcrystallites for catalytic applications, Proceedings 4 th International Symposium on Hydrothermal Reactions, Nancy (31 Aug–3 Sep 1993, eds by M. Cuney, M. Cathelineau (Institut Lorrain des Géosciences, Nancy, 1993), pp. 39–41

  84. S. Biswas, S. Kar, S. Chaudhuri, Effect of the precursors and solvents on the size shape and crystal structure of manganese sulphide crystals in solvothermal synthesis. Mater. Sci. Eng. B 142, 69–77 (2007)

    CAS  Google Scholar 

  85. G.K.L. Goh, S.M. Haile, C.G. Levi, F.F. Lange, Hydrothermal synthesis of perovskite and pyrochlore powders of potassium tantalate. J. Mater. Res. 17, 3168–3176 (2002)

    CAS  Google Scholar 

  86. L.M. Epshtein, A.V. Iogansen, Present ideas on the influence of the medium on acid–base equilibria, hydrogen bonds in the gas phase and in solution. Russ. Chem. Rev. 59, 134–151 (1990)

    Google Scholar 

  87. K.M. Dyumaev, B.A. Korolev, The influence of solvation on acid–base properties in various media. Russ. Chem. Rev. 49, 1021–1032 (1980)

    Google Scholar 

  88. Y. He, Y. Zhu, N. Wu, Mixed solvents: a key in solvothermal synthesis of KTaO3. J. Solid State Chem. 177, 2985–2990 (2004)

    CAS  Google Scholar 

  89. J. Lu, P. Qi, Y. Peng, Z. Meng, Z. Yang, W. Yu, Y. Qian, Metastable MnS crystallites through solvothermal synthesis. Chem. Mater. 13, 2169–2172 (2001)

    CAS  Google Scholar 

  90. Y. Hakuta, K. Seino, H. Ura, T. Adschiri, H. Takizawa, K. Arai, Production of phosphor (YAG#Tb) fine particles by hydrothermal synthesis in supercritical water. J. Mater. Chem. 9, 2671–2674 (1999)

    CAS  Google Scholar 

  91. Y. Hakuta, T. Hanaguma, K. Sue, T. Adschiri, K. Arai, Continuous production of phosphor YAG:Tb nanoparticles by hydrothermal synthesis in supercritical water. Mater. Res. Bull. 38, 1257–1265 (2003)

    CAS  Google Scholar 

  92. X. Li, H. Liu, J. Wang, H. Cui, S. Yang, I.R. Boughton, Solvothermal synthesis and luminescent properties of YAG:Tb nano-sized powders. J. Phys. Chem. Solids 66, 201–205 (2005)

    CAS  Google Scholar 

  93. Y. Liu, J. Cao, C. Li, J. Zeng, K. Tang, Y. Qian, W. Zhang, Hydrazide route to one-dimensional structural metal selenides crystals. J. Cryst. Growth 261, 508–513 (2004)

    CAS  Google Scholar 

  94. J.S. Lee, S.C. Choi, Solvent effect on synthesis of indium-tin oxide nano-powders by a solvothermal process. J. Europ. Ceram. Soc. 25, 3307–3314 (2005)

    CAS  Google Scholar 

  95. S. Yin, S. Akita, M. Shinozaki, R. Li, T. Sato, Synthesis and morphological control of rare earth oxide nanoparticles by solvothermal reaction. J. Mater. Sci. 43, 2234–2239 (2008)

    CAS  Google Scholar 

  96. R. Plass, S. Pelet, J. Krueger, M. Gratzel, U. Bach, Quantum dot sensitization of organic–inorganic hybrid solar cells. J. Phys. Chem. B 106, 7578–7580 (2002)

    CAS  Google Scholar 

  97. D. Poelman, J.E. Van Haecke, Ph.F. Smet, Advances in sulphide phosphors for displays and lighting. J. Mater. Sci. 20, S134–S138 (2009)

    Google Scholar 

  98. W. Chen, Nanoparticle fluorescence based technology for biological applications. J. Nanosci. Nanotechnol. 8, 1019–1051 (2008)

    CAS  Google Scholar 

  99. X. Zhu, J. Ma, J. Tao, J. Zhou, Z. Zhao, L. Xie, H. Tian, Mineralizer-assisted solvothermal synthesis of manganese sulphide crystallites. J. Am. Ceram. Soc. 89, 2926–2928 (2006)

    CAS  Google Scholar 

  100. D. Zhang, C. Pan, L. Shi, L. Huang, J. Fang, H. Fu, A highly reactive catalyst for CO oxidation: CeO2 nanotubes synthesized using carbon nanotubes as removable templates. Micropor. Mesopor. Mater. 117, 193–200 (2009)

    CAS  Google Scholar 

  101. S. Sharma, S. Komarneni, Synthesis and characterization of synthetic mica-bionanocomposites. Appl. Clay Sci. 42, 553–558 (2009)

    CAS  Google Scholar 

  102. Y.-X. Zhou, H.-B. Yao, Q. Zhang, J.-Y. Gong, S.-J. Liu, S.-H. Yu, Hierarchical FeWO4 Microcrystals: solvothermal synthesis and their photocatalytic and magnetic properties. Inorg. Chem. 48, 1082–1090 (2009)

    CAS  Google Scholar 

  103. E. Kiran, J.F. Brennecke, Supercritical Fluid Engineering Science: Fundamental and Applications (ACS Symp. Ser. 214, American Chem. Soc., Washington, DC, 1993)

  104. D.W. Adous, N.S. Stephens, P.H. Lightfoot, Synthesis of hybrid vanadium oxyfluorides. Dalton Trans. 37, 4207–4213 (2007)

    Google Scholar 

  105. D.W. Aldous, Ph. Lightfoot, Crystallisation of some mixed Na/V and K/V fluorides by solvothermal methods. Solid State Sci. 11, 315–319 (2008)

    Google Scholar 

  106. F. Wei, G. Li, Z. Zhang, Synthesis of high quality CdS nanorods by solvothermal process and their photoluminescence. J. Nanopart. Res. 7, 685–689 (2005)

    Google Scholar 

  107. G. Demazeau, A. Largeteau, S. Darracq, New trends in solvothermal crystal growth at the macro- and nanoscales. Z. Naturforschung B 65, 1007–1014 (2010)

    CAS  Google Scholar 

  108. K. Eda, K. Chin, N. Sotani, M.S. Whittingham, K2Mo4O13 phases prepared by hydrothermal synthesis. J. Solid Chem. 177, 916–921 (2004)

    CAS  Google Scholar 

  109. K.P. Reis, A. Ramanan, M.S. Whittingham, Synthesis of novel compounds with the pyrochlore and hexagonal tungsten bronze structures. J. Solid State Chem. 96, 31–47 (1992)

    CAS  Google Scholar 

  110. X. Ren, G. Zhao, H. Li, W. Wu, G. Han, The effect of different pH modifier on formation of CdS nanoparticles. J. Alloys Compd. 465, 534–539 (2008)

    CAS  Google Scholar 

  111. S. Shao, G. Zhang, H. Zhou, P. Sun, Z. Yuan, B. Li, D. Ding, T. Chen, Morphological evolution of PbS crystals under the control of l-lysine at different pH values: the ionization effect of the amino acid. Solid State Sci. 9, 725–731 (2007)

    CAS  Google Scholar 

  112. J. Wu, Y. Jiang, Q. Li, X. Liu, Y. Qian, Using thiosemicarbazide as starting material to synthesize CdS crystalline nanowhiskers via solvothermal route. J. Cryst. Growth 235, 421–424 (2002)

    CAS  Google Scholar 

  113. T. Taniguchi, K. Nakagawa, T. Watanabe, N. Matsushita, M. Yoshimura, Hydrothermal growth of fatty acid stabilized iron oxide nanocrystals. J. Phys. Chem. 113, 839–843 (2009)

    CAS  Google Scholar 

  114. K. Eda, Y. Uno, N. Nagai, N. Sotani, C. Chen, S. Whittingham, Structure-inheriting solid-state reactions under hydrothermal conditions. J. Solid State Chem. 179, 1453–1458 (2006)

    CAS  Google Scholar 

  115. N. Martin, P. Boutinaud, M. Malinowski, R. Mahion, J.C. Cousseins, Optical spectra and analysis of Pr3+ in β-NaYF4. J. Alloys Compd. 275–277, 304–306 (1998)

    Google Scholar 

  116. K.W. Krämer, D. Biner, G. Frei, H.U. Güdel, M.P. Hehlen, S.R. Lüthi, Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem Mater. 16, 1244–1251 (2004)

    Google Scholar 

  117. Z. Wang, F. Tao, L. Yao, W. Cai, X. Li, Selected synthesis of cubic and hexagonal NaYF4 crystals via a complex-assisted hydrothermal route. J. Cryst. Growth 290, 296–300 (2006)

    CAS  Google Scholar 

  118. R. Roy, Accelerating the kinetics of low-temperature inorganic syntheses. J. Solid State Chem. 111, 11–17 (1994)

    CAS  Google Scholar 

  119. M. Wu, G. Liu, M. Li, P. Dai, Y. Ma, L. Zhang, Magnetic field-assisted solvothermal assembly of one-dimensional nanostructures of Ni-Co alloys particles. J. Alloys Compd. 491, 689–693 (2010)

    CAS  Google Scholar 

  120. C.H. Yu, Z.H. Han, J. Yang, H.Q. Zhao, R.Y. Yang, Y. Xie, Y.T. Qian, Y.H. Zhang, Synthesis and formation mechanisms of La2O2S via a novel solvothermal pressure relief process. Chem. Mater. 11, 192–194 (1999)

    CAS  Google Scholar 

  121. J. Lu, Y. Xie, G. Du, X. Jiang, L. Zhu, X. Wang, Y. Qian, “Scission-template-transportation” route to controllably synthesize CdIn2S4 nanorods. J. Mater. Chem. 12, 103–106 (2002)

    CAS  Google Scholar 

  122. S. Huaqiang, Z. Xiaodong, X. Fu, W. Debao, H. Zhengsdui, Preparation of CdS nanowires and Bi2S3 nanorods by “extraction–Solvothermal method”. Mater. Lett. 60, 1793–1795 (2006)

    Google Scholar 

  123. M. Wen, H. Qi, W. Zhao, J. Chen, L. Li, Q. Wu, Phase transfer catalysis synthesis of monodisperse FePt nanoparticles and its electrocatalytic activity. Colloids Surf. 312, 73–78 (2008)

    CAS  Google Scholar 

  124. R.E. Morris, Concepts in the ionothermal synthesis of zeolites and metal organic frameworks. Stud. Surf. Sci. Catal. 174, 33–42 (2008)

    Google Scholar 

  125. Q.R. Hu, S.L. Wang, P. Jiang, H. Xu, Y. Zhang, W.H. Tang, Synthesis of ZnO nanostructures in organic solvents and their luminescence properties. J. Alloys Compd. 496, 494–499 (2010)

    CAS  Google Scholar 

  126. J. Yang, C. Zang, G. Wang, G. Xu, X. Cheng, Synthesis of CdS microspheres via solvothermal process in a mixed solution. J. Alloys Compd. 495, 158–161 (2010)

    CAS  Google Scholar 

  127. S.Y. Sawant, R.S. Somani, H.C. Bajaj, A solvothermal-reduction method for the production of horn shaped multi-wall carbon nanotubes. Carbon 48, 668–672 (2010)

    CAS  Google Scholar 

  128. J. Sheng, K. Tang, Z. Liang, Y. Wang, D. Wang, W. Zhang, Solvothermal fluorination method to insert fluorine into Sr2CuO3 and NdSr2Cu2O6-δ. Mater. Chem. Phys. 115, 483–487 (2009)

    CAS  Google Scholar 

  129. L. Zhu, M. Tan, G. Lian, X. Zhang, D. Cui, Q. Wang, Investigation on the synthesis of turbostratic boron nitride by solvothermal hot-press method. Solid State Sci. 12, 1084–1087 (2010)

    CAS  Google Scholar 

  130. Y. Di, A.L. Thompson, N. Russell, D. O’Hare, Resin-assisted solvothermal synthesis of transition metal-organic frameworks. Dalton Trans. 39, 3384–3395 (2010)

    Google Scholar 

  131. S.H. Kim, B.K. Park, Solvothermal synthesis of Bi2Te3 nanotubes by the interdiffusion of Bi and Te metals. Mater. Lett. 64, 938–941 (2010)

    CAS  Google Scholar 

  132. A.C.A. Jayasundera, R.J. Goff, Y. Li, A.A. Finch, P. Lightfoot, Solvothermal indium fluoride chemistry and crystal structure of K5In3F14, β-(NH4)3InF6. J. Solid State Chem. 183, 356–360 (2010)

    CAS  Google Scholar 

  133. Z. Lin, X. Bu, P. Feng, Two new layered bimetallic sulfides: solvothermal synthesis, crystal structure, optical and magnetic properties. Micropor. Mesopor. Mater. 132, 328–334 (2010)

    CAS  Google Scholar 

  134. J.H. Kim, H. Park, C.-H. Hsu, J. Xu, Facile synthesis of bismuth sulphide nanostructures and morphology tuning by a biomolecule. J. Chem. Phys. 114, 9634–9639 (2010)

    CAS  Google Scholar 

  135. W. Zhou, Y. Xu, L. Han, D. Zhu, Solvothermal synthesis, crystal structures and luminescence properties of three lanthanide sulphate fluorides. Dalton Trans. 39, 3681–3686 (2010)

    CAS  Google Scholar 

  136. P. Chirico, A.L. Hector, B. Mazumder, Solvothermal synthesis of Group 5 and 6 nitrides via reactions using LiNH2 and ammonia nitrogen sources. Dalton Trans. 39, 6092–6097 (2010)

    CAS  Google Scholar 

  137. L. Zhu, M. Tan, G. Lian, X. Zhang, D. Cui, Q. Wang, Investigation on the synthesis of turbostratic boron nitride by solvothermal hot-press method. Solid State Sci. 12, 1084–1087 (2010)

    Google Scholar 

  138. H.-B. Yao, M.-R. Gao, S.-H. Yu, Small organic molecule templating synthesis of organic–inorganic hybrid materials: their nanostructures and properties. Nanoscale 2, 323–334 (2010)

    CAS  Google Scholar 

  139. Z. Liu, X. Zhou, Y. Qian, Synthetic methodologies for carbon nanomaterials. Adv. Mater. 22, 1963–1966 (2010)

    CAS  Google Scholar 

  140. D. Chen, X. Qiao, X. Qiu, J. Chen, R. Jiang, Convenient synthesis of silver nanowires with adjustable diameters via a solvothermal method. J. Colloid Interface Sci. 344, 286–291 (2010)

    CAS  Google Scholar 

  141. S. Bhattacharjee, J.-S. Choi, S.-T. Yang, S.-B. Choi, Solvothermal synthesis of Fe-MOF-74 and its catalytic properties in phenol hydroxylation. J. Nanosci. Nanotech. 10, 135–141 (2010)

    CAS  Google Scholar 

  142. D.R. Modeshia, R.I. Walton, Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions. Chem. Soc. Rev. 39, 1–23 (2010)

    Google Scholar 

  143. N. Sangkhaprom, P. Supaphol, V. Pavarajarn, Fibrous zinc oxide prepared by combined electrospinning and solvothermal techniques. Ceram. Int. 36, 357–363 (2010)

    CAS  Google Scholar 

  144. T. Thongtem, C. Pilapong, S. Thongtem, Synthesis of novel ZnS/ZnAl2S4 core/shell nanocomposites using a facile solvothermal route. J. Alloys Compd. 496, L29–L32 (2010)

    CAS  Google Scholar 

  145. H.-Y. Chang, H.-D. Lee, M.-L. Wu, L.-J. Lin, Highly efficient cathodoluminescence of nanophosphors by solvothermal route. J. Lumin. 130, 969–975 (2010)

    CAS  Google Scholar 

  146. C.H. Lu, T.Y. Wu, C.H. Hsu, Synthesis and photoluminescent characteristics of Sr2CeO4 phosphors prepared via a microwave-assisted solvothermal. J. Lumin. 130, 737–742 (2010)

    CAS  Google Scholar 

  147. J. Wu, X. Shen, L. Jiang, K. Wang, K. Chen, Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites. Appl. Surf. Sci. 256, 2826–2830 (2010)

    CAS  Google Scholar 

  148. K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology: A Technology for Crystal Growth and materials Processing (William Andrew Publishing, Noyes, 2001)

    Google Scholar 

  149. C. Collado, G. Demazeau, B. Berdeu, A. Largeteau, J.C. Garcia, J.-L. Guyaux, J. Massies, A new preparation process of GaN: solvothermal synthesis. C.R. Acad. Sci. 2, 483–485 (1999)

    CAS  Google Scholar 

  150. D. Ehrentraut, Y. Kagamitani, C. Yokoyama, T. Fukuda, Physico-chemical features of the acid ammonothermal growth of GaN. J. Cryst. Growth 310, 891–895 (2008)

    CAS  Google Scholar 

  151. D. Ehrentraut, F. Orito, Y. Mikawa, T. Fukuda, Solvothermal growth of ZnO and GaN, in Oxide and Nitride semiconductors, Advance in Material Research, vol. 12, ed. by T. Yao, S.-H. Hong (Springer, Berlin, 2009), pp. 21–66

    Google Scholar 

  152. L.N. Demyanets, V. Lyutin, Status of hydrothermal growth of bulk ZnO: latest issues and advantages. J. Cryst. Growth 310, 993–999 (2008)

    CAS  Google Scholar 

  153. J. Horita, M.E. Berndt, A biogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285, 1055–1057 (1999)

    Google Scholar 

  154. C. Hae, Z. Liu, S. Feng, A mild hydrothermal route to fix carbon dioxide to simple carboxylic acids. Org. Lett. 12, 649–651 (2010)

    Google Scholar 

  155. G. Tian, C. He, Y. Chen, H.-M. Yuan, Z.-W. Liu, Z. Shi, S.-H. Feng, Hydrothermal reactions from carbon dioxide to phenol. Chem Sustain Chem 3, 323–324 (2010)

    CAS  Google Scholar 

  156. J. Xu, M.H. Thomsen, A.B. Thomsen, Feasibility of hydrothermal pre-treatment on maize silage for bioethanol production. Appl. Biochem. Biotechnol. 162, 33–42 (2010)

    CAS  Google Scholar 

  157. W. Martin, J. Baross, D. Kelley, M.J. Russell, Hydrothermal vents and the origin of life. Nat. Rev. 6, 805–814 (2008)

    CAS  Google Scholar 

  158. G. Maheen, G. Tian, Y. Wang, C. He, Z. Shi, H. Yuan, S.-H. Feng, Resolving the enigma of prebiotic C–O–P bond formation: prebiotic hydrothermal synthesis of important biological phosphate esters. Heteroat. Chem. 21, 161–167 (2010)

    CAS  Google Scholar 

  159. N. Murakami, T.-A. Kamai, T. Tsubota, T. Ohno, Control of the crystal structure of titanium (IV) oxide by hydrothermal treatment of a titanate nanotube under acidic conditions. Cryst Eng Commun. 12, 532–537 (2010)

    CAS  Google Scholar 

  160. K. Anastasiadou, D. Axiotis, E. Gidarakos, Hydrothermal conversion of chrysotile asbestos using near supercritical conditions. J. Hazard. Mater. 179, 926–932 (2010)

    CAS  Google Scholar 

  161. X. Weng, J.K. Cockcroft, G. Hyett, M. Vickers, P. Boldrin, C.C. Tan, S.P. Thompson, J.E. Parkers, J.C. Knowles, I. Rehman, I. Parkin, J.R.G. Evans, J.A. Darr, High Throughput continuous hydrothermal synthesis of an entire nanoceramic phase diagram. J. Comb. Chem. 11, 829–834 (2009)

    CAS  Google Scholar 

  162. T. Sasaki, S. Ohara, T. Naka, J. Vejpravova, V. Sechovsky, M. Umetsu, S. Takami, B. Jeyadevan, T. Adschiri, Continuous synthesis of fine MgFe2O4 nanoparticles by supercritical hydrothermal reaction. J. Supercrit. Fluids 53, 92–94 (2010)

    CAS  Google Scholar 

  163. E. Lester, P.J. Blood, J.P. Denyer, B.J. Azzopardi, J. LI, M. Poliakoff, Impact of reactor geometry on continuous hydrothermal synthesis mixing. Mat. Res. Innov. 14, 19–26 (2010)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Demazeau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demazeau, G. Solvothermal and hydrothermal processes: the main physico-chemical factors involved and new trends. Res Chem Intermed 37, 107–123 (2011). https://doi.org/10.1007/s11164-011-0240-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-011-0240-z

Keywords

Navigation