Skip to main content

Advertisement

Log in

Heparin Immobilized Porous PLGA Microspheres for Angiogenic Growth Factor Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Heparin immobilized porous poly(d,l-lactic-co-glycolic acid) (PLGA) microspheres were prepared for sustained release of basic fibroblast growth factor (bFGF) to induce angiogenesis.

Materials and Methods

Porous PLGA microspheres having primary amine groups on the surface were prepared using an oil-in-water (O/W) single emulsion method using Pluronic F-127 as an extractable porogen. Heparin was surface immobilized via covalent conjugation. bFGF was loaded into the heparin functionalized (PLGA-heparin) microspheres by a simple dipping method. The bFGF loaded PLGA-heparin microspheres were tested for in vitro release and in vivo angiogenic activity.

Results

PLGA microspheres with an open-porous structure were formed. The amount of conjugated amine group onto the microspheres was 1.93 ± 0.01 nmol/mg-microspheres, while the amount of heparin was 95.8 pmol/mg-microspheres. PLGA-heparin microspheres released out bFGF in a more sustained manner with a smaller extent of initial burst than PLGA microspheres, indicating that surface immobilized heparin controlled the release rate of bFGF. Subcutaneous implantation of bFGF loaded PLGA-heparin microspheres in mice significantly induced the formation of new vascular microvessels.

Conclusions

PLGA microspheres with an open porous structure allowed significant amount of heparin immobilization and bFGF loading. bFGF loaded PLGA-HP microspheres showed sustained release profiles of bFGF in vitro, demonstrating reversible and specific binding of bFGF to immobilized heparin. They also induced local angiogenesis in vivo in an animal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Carmeliet. Angiogenesis in health and disease. Nat. Med. 9:653–660 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. P. Carmeliet. Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6:389–395 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. J. Li and R. S. Kirsner. Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc. Res. Tech. 60:107–114 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. T. P. Richardson, M. C. Peters, A. B. Ennett, and D. J. Mooney. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19:1029–1034 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. K. Y. Lee, M. C. Peters, K. W. Andersonm, and D. J. Mooney. Controlled growth factor release from synthetic extracellular matrices. Nature 408:998–1000 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. H. Lee, R. A. Cusick, F. Browne, T. H. Kim, P. X. Ma, H. Utsunomiya, R. Langer, and J. Vacanti. Local delivery of basic fibroblast growth factor increases both angiogenesis and engraftment of hepatocytes in tissue-engineered polymer devices. Transplantation 73:1589–1593 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. C. L. Casper, N. Yamaguchi, K. L. Kiick, and J. F. Rabolt. Functionalizing electrospun fibers with biologically relevant macromolecules. Biomacromolecules 6:1998–2007 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. J. E. Markkanen, T. T. Rissanen, A. Kivela, and S. Yla-Herttuala. Growth factor-induced therapeutic angiogenesis and arteriogenesis in the heart-gene therapy. Cardiovasc. Res. 65:656–664 (2005).

    Article  PubMed  CAS  Google Scholar 

  9. Y. Cao, P. Lenden, D. Shima, F. Browne, and J. Folkman. In vivo angiogenic activity and hypoxia induction of heterodimers of placenta growth factor/vascular endothelial growth factor. J. Clin. Invest. 98:2507–2511 (1996).

    Article  PubMed  CAS  Google Scholar 

  10. J. L. Cleland, E. T. Duenas, A. Park, A. Daugherty, J. Kahn, and J. Kowalski. Development of poly-(d,l-lactide-coglycolide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis. J. Control. Release 72:13–24 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. P. B. O'Donnell and J. W. McGinity. Preparation of microspheres by the solvent evaporation technique. Adv. Drug Del. Rev. 28:25–42 (1997).

    Article  Google Scholar 

  12. H. K. Kim and T. G. Park. Microencapsulation of human growth hormone within biodegradable polyester microspheres: protein aggregation stability and incomplete release mechanism. Biotech. Bioeng. 65:659–667 (1999).

    Article  CAS  Google Scholar 

  13. M. van de Weert, W. E. Hennink, and W. Jiskoot. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm. Res. 17:1159–1167 (2000).

    Article  PubMed  Google Scholar 

  14. R. Sasisekharan, S. Ernst, and G. Venkataraman. On the regulation of fibroblast growth factor activity by heparin-like glycosaminoglycans. Angiogenesis 1:45–54 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. X. H. Wang, D. P. Li, W. J. Wang, Q. L. Feng, F. Z. Cui, Y. X. Xu, and X. H. Song. Covalent immobilization of chitosan and heparin on PLGA surface. Int. J. Biol. Macromol. 33:95–100 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. A. Perets, Y. Baruch, F. Weisbuch, G. Shoshany, G. Neufeld, and S. Cohen. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J. Biomed. Mater. Res. 65A:489–497 (2003).

    Article  CAS  Google Scholar 

  17. G. C. M. Steffens, C. Yao, P. Prevel, M. Markowicz, P. Schenck, E. M. Noah, and N. Pallua. Modulation of angiogenic potential of collagen matrices by covalent incorporation of heparin and loading with vascular endothelial growth factor. Tissue Eng. 10:1502–1509 (2004).

    PubMed  CAS  Google Scholar 

  18. H. K. Kim, H. J. Chung, and T. G. Park. Biodegradable polymeric microspheres with “open/closed” pores for sustained release of human growth hormone. J. Control. Release 112:167–174 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. G. T. Hermanson. Bioconjugate Techniques, Academic, San Diego, California, 1996.

    Google Scholar 

  20. J. J. Yoon, S. H. Song, D. S. Lee, and T. G. Park. Immobilization of cell adhesive RGD peptide onto the surface of highly porous biodegradable polymer scaffolds fabricated by a gas foaming/salt leaching method. Biomaterials 25:5613–5620 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. O. Jeon, S. W. Kang, H. W. Lim, J. H. Chung, and B. S. Kim. Long-term and zero-order release of basic fibroblast growth factor from heparin-conjugated poly(l-lactide-co-glycolide) nanospheres and fibrin gel. Biomaterials 27:1598–1607 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. I. Kang, D. K. Baek, Y. M. Lee, and Y. K. Sung. Synthesis and surface characterization of heparin-immobilized polyurethanes. J. Polym. Sci., Part A: Polym. Chem. 36:2331–2338 (1998).

    Article  CAS  Google Scholar 

  23. V. D. Nadkarni, A. Pervin, and R. J. Lindhardt. Directional immobilization of heparin onto beaded supports. Anal. Biochem. 222(1):59–67 (1994).

    Article  PubMed  CAS  Google Scholar 

  24. T. Magoshi, H. Ziani-Cherif, S. Ohya, Y. Nakayama, and T. Matsuda. Thermosensitive heparin coating: heparin conjugated with poly(N-isopropylacrylamide) at one terminus. Langmuir 18:4862–4872 (2002).

    Article  CAS  Google Scholar 

  25. P. K. Smith, A. K. Mallia, and G. T. Hermanson. Colorimetric method for the assay of heparin content in immobilized heparin preparations. Anal. Biochem. 109:466–473 (1980).

    Article  PubMed  CAS  Google Scholar 

  26. G. Caponetti, J. S. Hrkach, B. Kriwet, M. Poh, N. Lotan, P. Colombo, and R. Langer. Microparticles of novel branched copolymers of lactic acid and amino acids: preparation and characterization. J. Pharm. Sci. 88:136–141 (1999).

    Article  PubMed  CAS  Google Scholar 

  27. A. Lamprecht, U. F. Schafer, and C. M. Lehr. Visualization and quantification of polymer distribution in microcapsules by confocal laser scanning microscopy (CLSM). Int. J. Pharm. 196:223–226 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. A. Lamprecht, U. F. Schafer, and C. M. Lehr. Characterization of microcapsules by confocal laser scanning microscopy: structure, capsule wall composition and encapsulation rate. Eur. J. Pharm. Biopharm. 49:1–9 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. L. D. Thompson, M. W. Patoliano, and B. A. Springer. Energetic characterization of the basic fibroblast growth factor-heparin interaction: identification of the heparin binding domain. Biochemistry 33:3831–3840 (1994).

    Article  PubMed  CAS  Google Scholar 

  30. M. Fugita, M. Ishihara, M. Simizu, K. Obara, T. Ishizuka, Y. Saito, H. Yura, Y. Morimoto, B. Takase, T. Matsui, M. Kikuchi, and T. Maehara. Vascularization in vivo caused by the controlled release of fibroblast growth factor-2 from an injectable chitosan/non-anticoagulant heparin hydrogel. Biomaterials 25:699–706 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Ministry of Commerce, Industry and Energy (10011366) and from the Ministry of Science and Technology, National Research Laboratory Program, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Gwan Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, H.J., Kim, H.K., Yoon, J.J. et al. Heparin Immobilized Porous PLGA Microspheres for Angiogenic Growth Factor Delivery. Pharm Res 23, 1835–1841 (2006). https://doi.org/10.1007/s11095-006-9039-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9039-9

Key words

Navigation