Skip to main content
Log in

Atmospheric Pressure Plasma Discharge for Polysiloxane Thin Films Deposition and Comparison with Low Pressure Process

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

An atmospheric pressure dielectric barrier plasma discharge has been used to study a thin film deposition process. The DBD device is enclosed in a vacuum chamber and one of the electrodes is a rotating cylinder. Thus, this device is able to simulate continuous processing in arbitrary deposition condition of pressure and atmosphere composition. A deposition process of thin organosilicon films has been studied reproducing a nitrogen atmosphere with small admixtures of hexamethyldisiloxane (HMDSO) vapours. The plasma discharge has been characterized with optical emission spectroscopy and voltage-current measurements. Thin films chemical composition and morphology have been characterized with FTIR spectroscopy, atomic force microscopy (AFM) and contact angle measurements. A strong dependency of deposit character from the HMDSO concentration has been found and then compared with the same dependency of a typical low pressure plasma enhanced chemical vapour deposition process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ward LJ, Schofield WCE, Badyal JPS, Goodwin AJ, Merlin PJ (2003) Langmuir 19:2110

    Article  Google Scholar 

  2. Massines F, Gherardi N, Fornelli A, Martin S (2005) Surf Coat Technol 200:1855

    Article  Google Scholar 

  3. Trunec D, Navrátil Z, Stahel P, Zajíčková L, Buršíková V, Čech J (2004) J Phys D Appl Phys 37:2112

    Article  ADS  Google Scholar 

  4. Foest R, Adler F, Sigeneger F, Schmidt M (2003) Surf Coat Technol 163–164:323

    Article  Google Scholar 

  5. Paulussen S, Rego R, Goossens O, Vangeneugden D, Rose K (2005) J Phys D Appl Phys 38:568

    Article  ADS  Google Scholar 

  6. Sonnenfeld A, Tun TM, Zajíčková L, Kozlov KV, Wagner HE, Behnke JF, Hippler R (2001) Plasmas Polym 6:237

    Article  Google Scholar 

  7. Schmidt-Szalowski K, Rźanek-Boroch Z, Sentek J, Rymuza Z, Kusznierewicz Z, Misiak M (2000) Plasmas Polym 5:173

    Article  Google Scholar 

  8. Becker K, Kogelschatz U, Schoenbach K, Barker R (2004) Non-Equilibrium Air Plasmas at Atmospheric Pressure, Institute of Physics Publishing, Bristol UK

  9. Fridman A, Kennedy LA (2004) Plasma physics and engineering. Taylor & Francis, New York

  10. Kogelschatz U (2003) Plasma Chem Plasma Process 23:1

    Article  Google Scholar 

  11. Raizer YP (1997) Gas discharge physics. Springer, Heidelberg DE

  12. Kanazawa S, Kogoma M, Moriwaki T, Okazaki S (1988) J Phys D Appl Phys 21:838

    Article  ADS  Google Scholar 

  13. Massines F, Gherardi N, Naudé N, Ségur P (2005) Plasma Phys Control Fusion 47:B577

    Article  Google Scholar 

  14. Gherardi N, Gouda G, Gat E, Ricard A, Massines F (2000) Plasma Sources Sci Technol 9:340

    Article  ADS  Google Scholar 

  15. Kogelschatz U (2002) IEEE Transactions on Plasma Sci 30:1400

    Article  ADS  Google Scholar 

  16. Creatore M, Palumbo F, D’Agostino R (2002) Pure Appl Chem 74:407

    Article  Google Scholar 

  17. Hedenqvist MS, Johansson KS (2003) Surf Coat Technol 172:7

    Article  Google Scholar 

  18. Creatore M, Palumbo F, D’Agostino R, Fayet P (2001) Surf Coat Technol 142:163

    Article  Google Scholar 

  19. Hegemann D, Vohrer U, Oehr C, Riedel R (1999) Surf Coat Technol 119:1033

    Article  Google Scholar 

  20. Wrobel AM, Blaszczyk-Lezak I (2007) Appl Surf Sci 253:7404

    Article  ADS  Google Scholar 

  21. Vautrin-Ul C, Boisse-Laporte C, Benissad N, Chausse A, Leprince P, Messina R (2000) Prog Org Coat 38:9

    Article  Google Scholar 

  22. Bardon J, Bour J, Aubriet H, Ruch D, Verheyde B, Dams R, Paulussen S, Rego R, Vangeneugden D (2007) Plasma Process Polym 4:445

    Article  Google Scholar 

  23. Prasad GR, Daniels S, Cameron DC, McNamara BP, Tully E, O’Kennedy R (2005) Surf Coat Technol 200:1031

    Article  Google Scholar 

  24. Favia P, D’Agostino R (1998) Surf Coat Technol 98:1102

    Article  Google Scholar 

  25. Hegemann D, Brunner H, Oehr C (2001) Plasmas Polym 6:221

    Article  Google Scholar 

  26. Biederman H (2004) Plasma polymer films, Imperial College Press, London

  27. Jones AC, Hitchman ML (2009) Chemical vapour deposition: precursors: processes and applications. Royal Society of Chemistry, Cambridge

    Google Scholar 

  28. Morent R, De Geyter N, Van Vlierberghe S, Dubruel P, Leys C, Schacht E (2009) Surf Coat Technol 203:1366

    Article  Google Scholar 

  29. Morent R, De Geyter N, Jacobs T, Van Vlierberghe S, Dubruel P, Schacht E (2009) Plasma Proc Polym 6:537

    Article  Google Scholar 

  30. Fanelli F, Lovascio S, D’Agostino R, Arefi-Khonsari F, Fracassi F (2010) Plasma Proc Polym 7:535

    Article  Google Scholar 

  31. Scott DW, Messerly JF, Todd SS, Guthrie GB, Hossenlopp IA, Moore RT, Osborn A, Berg WT, McCullough JP (1961) J Phys Chem 65:1320

    Article  Google Scholar 

  32. Barni R, Zanini S, Siliprandi RA, Esena P, Riccardi C (2008) Proceedings of the 3rd International Conference on the Frontiers of plasma physics and technology, IAEA P17:1

  33. Argueso M, Robles G, Sanz J (2005) Rev Sci Instrum 76:065107

    Article  ADS  Google Scholar 

  34. Siliprandi RA, Roman HE, Barni R, Riccardi C (2008) J Appl Phys 104:063309

    Article  ADS  Google Scholar 

  35. Eliasson B, Kogelschatz U (1991) IEEE Transactions on Plasma Science 19:309

    Article  ADS  Google Scholar 

  36. Eliasson B, Egli W, Kogelschatz U (1994) Pure Appl Chem 66:1275

    Article  Google Scholar 

  37. Pearse R, Gaydon A (1976) The identification of molecular spectra, Wiley, New York

  38. Britun N, Gaillard M, Ricard A, Kim YM, Kim KS, Han JG (2007) J Phys D Appl Phys 40:1022

    Article  ADS  Google Scholar 

  39. Laux CO, Spence TG, Kruger CH, Zare RN (2003) Plasma Sources Sci Technol 12:125

    Article  ADS  Google Scholar 

  40. Gilmore FR, Laher RR, Espy PJ (1992) J Phys Chem Ref Data 21:1005

    Article  ADS  Google Scholar 

  41. Da Silva ML, Guerra V, Loureiro J (2009) Plasma Sources Sci Technol 18:034023

    Article  ADS  Google Scholar 

  42. Hutchinson IH (1990) Principles of plasma diagnostics, Cambridge University Press, New York

  43. Sawada Y, Ogawa S, Kogoma M (1995) J Phys D Appl Phys 28:1661

    Article  ADS  Google Scholar 

  44. Kurosawa S, Choi BG, Park JW, Aizawa H, Shim KB, Yamamoto K (2006) Thin Solid Films 506–507:176

    Article  Google Scholar 

  45. Günzler H, Gremlich HU (2002) IR Spectroscopy: an Introduction, Wiley-VCH, Weinheim

  46. Zanini S, Riccardi C, Orlandi M, Esena P, Tontini M, Milani M, Cassio V (2005) Surf Coat Technol 200:953

    Article  Google Scholar 

  47. Yeh YS, Shyy IN, Yasuda H (1988) J Appl Polym Sci Symp 42:1

    Google Scholar 

  48. Yasuda H, Hirotsu T (1978) J Polym Sci Polym Chem 14:743

    Google Scholar 

  49. Schmachtenberg E, Costa FR, Gobel S (2006) J Appl Polym Sci 99:1485

    Article  Google Scholar 

  50. Gao L, McCarthy T (2006) Langmuir 22:6234

    Article  Google Scholar 

  51. Inagaki N (1995) Plasma surface modification and plasma polymerization. Technomic: Lancaster

  52. Grimoldi E, Zanini S, Siliprandi RA, Riccardi C (2009) Eur Phys J D 54:165

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the help of Moreno Piselli and Alessandro Mietner in the development of the DBD device.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruggero Barni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siliprandi, R.A., Zanini, S., Grimoldi, E. et al. Atmospheric Pressure Plasma Discharge for Polysiloxane Thin Films Deposition and Comparison with Low Pressure Process. Plasma Chem Plasma Process 31, 353–372 (2011). https://doi.org/10.1007/s11090-011-9286-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-011-9286-3

Keywords

Navigation