Skip to main content
Log in

Effects of exercise training combined with insulin treatment on cardiac NOS1 signaling pathways in type 1 diabetic rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This study examined the effects of a dual treatment combining insulin treatment and exercise training on basal cardiac function and signaling pathways involving β3-AR, NOS1, and RyR2 in type 1 diabetic rats. Male Wistar rats were assigned into a diabetic group receiving no treatment (D), an insulin-treated diabetic (Ins), a trained diabetic (TD), and a trained insulin-treated diabetic (TIns) group. Control group (C) was included in order to confirm the deleterious effects of diabetes. Insulin treatment and/or treadmill exercise training were conducted for 8 weeks. Basal cardiac function was evaluated by Langendorff technique. Cardiac protein expression of β3-AR, NOS1, and RyR2 was assessed using Western blots. Diabetes induced a decrease of both basal diastolic and systolic (±dP/dt) cardiac function (P < 0.05). Moreover, diabetes was associated with an increase of β3-AR and NOS1 and a decrease of RyR2 expression (P < 0.05). Although combined treatment was not able to normalize –dP/dt, it succeeded to normalize +dP/dt of diabetic rats. Combined treatment led to an overexpression of RyR2. Effects of this combined treatment on +dP/dt and RyR2 were greater than the effects of insulin and exercise training, applied solely. Treatments, applied solely or in combination, resulted in a complete normalization of β3-AR and in a down-regulation of NOS1 because this protein expression in all treated diabetic rats became lower than control values (P < 0.01). Our study shows that unlike single treatments, dual treatment combining insulin treatment and exercise training was able to normalize basal systolic function of diabetic rats by a specific regulation of β3-AR–NOS1–RyR2 signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barnett AH (2006) Insulin glargine in the treatment of type 1 and type 2 diabetes. J Vasc Health Risk Manag 2(1):59–67

    Article  CAS  Google Scholar 

  2. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30(6):595–602

    Article  CAS  PubMed  Google Scholar 

  3. Bell DS (1995) Diabetic cardiomyopathy. A unique entity or a complication of coronary artery disease? Diabetes Care 18(5):708–714

    Article  CAS  PubMed  Google Scholar 

  4. Amour J, Loyer X, Le Guen M, Mabrouk N, David JS, Camors E, Carusio N, Vivien B, Andriantsitohaina R, Heymes C, Riou B (2007) Altered contractile response due to increased beta3-adrenoceptor stimulation in diabetic cardiomyopathy: the role of nitric oxide synthase 1-derived nitric oxide. Anesthesiology 107(3):452–460

    Article  CAS  PubMed  Google Scholar 

  5. Bredt DS, Snyder SH (1994) Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63:175–195

    Article  CAS  PubMed  Google Scholar 

  6. Massion PB, Balligand JL (2007) Relevance of nitric oxide for myocardial remodeling. Curr Heart Fail Rep 4(1):18–25

    Article  CAS  PubMed  Google Scholar 

  7. Ignarro LJ (2002) Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J Physiol Pharmacol 53(4 Pt 1):503–514

    CAS  PubMed  Google Scholar 

  8. Hare JM (2003) Nitric oxide and excitation-contraction coupling. J Mol Cell Cardiol 35(7):719–729

    Article  CAS  PubMed  Google Scholar 

  9. Hare JM, Stamler JS (1999) NOS: modulator, not mediator of cardiac performance. Nat Med 5:273–274

    Article  CAS  PubMed  Google Scholar 

  10. Mery PF, Pavoine C, Belhassen L, Pecker F, Fischmeister R (1993) Nitric oxide regulates cardiac Ca2 + current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclise activity. J Biol Chem 268:26286–26295

    CAS  PubMed  Google Scholar 

  11. Xu L, Eu JP, Meissner G, Stamler JS (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279:234–237

    Article  CAS  PubMed  Google Scholar 

  12. Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, Kobeissi ZA, Hobai IA, Lemmon CA, Burnett AL, O’Rourke B, Rodriguez RE, Huang PL, Lima JAC, Berkowitz DE, Hare JM (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416:337–340

    CAS  PubMed  Google Scholar 

  13. Choi KM, Zhong Y, Hoit BD, Grupp IL, Hahn H, Dilly KW, Guatimosim S, Lederer WJ, Matlib MA (2002) Defective intracellular Ca2+ signalling contributes to cardiomyopathy in type 1 diabetic rats. Am J Physiol (Heart Circ Physiol) 283:H1398–H1408

    CAS  Google Scholar 

  14. Bidasee KR, Nallani K, Henry B, Dincer D, Besch HR (2003) Chronic diabetes alters function and expression of ryanodine receptor calcium-release channels in rat hearts. Mol Cell Biochem 249:113–123

    Article  CAS  PubMed  Google Scholar 

  15. Bendall JK, Damy T, Ratajczak P, Loyer X, Monceau V, Marty I, Milliez P, Robidel E, Marotte F, Samuel JL, Heymes C (2004) Role of myocardial neuronal nitric oxide synthase-derived nitric oxide in beta-adrenergic hyporesponsiveness after myocardial infarction-induced heart failure in rat. Circulation 110(16):2368–2375

    Article  CAS  PubMed  Google Scholar 

  16. Gonzalez DR, Beigi F, Treuer AV, Hare JM (2007) Deficient ryanodine receptor S-nitrosylation increases sarcoplasmic reticulum calcium leak and arrhythmogenesis in cardiomyocytes. Proc Natl Acad Sci USA 104(51):20612–20617

    Article  CAS  PubMed  Google Scholar 

  17. Flaim KE, Kochel PC, Kira Y, Kobayashi K, Fossel ET, Jefferson LS (1983) Insulin effects on protein synthesis are independent of glucose and energy metabolism. Am J Physiol 245:C133–C143

    CAS  PubMed  Google Scholar 

  18. Fallow GD, Singh J (2004) The prevalence, type and severity of cardiovascular disease in diabetic and non-diabetic patients: a matched-paired retrospective analysis using coronary angiography as the diagnostic tool. Mol Cell Biochem 261(1–2):263–269

    Article  CAS  PubMed  Google Scholar 

  19. Acar G, Akcay A, Sokmen A, Ozkaya M, Guler E, Sokmen G, Kaya H, Nacar AB, Tuncer C (2009) Assessment of atrial electromechanical delay, diastolic functions, and left atrial mechanical functions in patients with type 1 diabetes mellitus. J Am Soc Echocardiogr 22(6):732–738

    Article  PubMed  Google Scholar 

  20. Gulve EA (2008) Exercise and glycemic control in diabetes: benefits, challenges, and adjustments to pharmacotherapy. Phys Ther 88(11):1297–1321

    Article  PubMed  Google Scholar 

  21. Bidasee KR, Zheng H, Shao CH, Parbhu SK, Rozanski GJ, Patel KP (2008) Exercise training initiated after the onset of diabetes preserves myocardial function: effects on expression of β-adrenoceptors. J Appl Physiol 105(3):907–914

    Article  CAS  PubMed  Google Scholar 

  22. Shao CH, Wehrens XH, Wyatt TA, Parbhu S, Rozanski GJ, Patel KP, Bidasee KR (2009) Exercise training during diabetes attenuates cardiac ryanodine receptor dysregulation. J Appl Physiol 106(4):1280–1292

    Article  CAS  PubMed  Google Scholar 

  23. Bidasee KR, Dincer ÜD, Besch HR (2001) Ryanodine receptor dysfunction in hearts of streptozotocin-induced diabetic rats. Mol Pharmacol 60(6):1356–1364

    CAS  PubMed  Google Scholar 

  24. Zhong Y, Ahmed S, Grupp IL, Matlib MA (2001) Altered SR protein expression associated with contractile dysfunction in diabetic rats hearts. Am J Physiol (Heart and Circulatory Physiology) 281:H1137–H1147

    CAS  Google Scholar 

  25. Le Douairon Lahaye S, Gratas-Delamarche A, Malardé L, Carré F Rannou Bekono F (2010) 8 weeks of intense endurance training decrease β2-adrenoceptors in heart of diabetic rat. Sci Sports 25:153–156

  26. Lemoine S, Granier P, Tiffoche C, Berthon PM, Rannou-Bekono F, Thieulant ML, Carré F, Delamarche P (2002) Effect of endurance training on oestrogen receptor alpha transcripts in rat skeletal muscle. Acta Physiol Scand 174(3):283–289

    Article  CAS  PubMed  Google Scholar 

  27. Barbier J, Rannou-Bekono F, Marchais J, Tanguy S, Carré F (2007) Alterations of beta3-AR expression and their myocardial functional effects in physiological model of chronic exercise-induced cardiac hypertrophy. Mol Cell Biochem 300(1–2):69–75

    Article  CAS  PubMed  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  29. Raev DC (1993) Evolution of cardiac changes in young insulin-dependent (type 1) diabetic patients-one more piece of the puzzle of diabetic cardiopathy. Clin Cardiol 16(11):784–790

    Article  CAS  PubMed  Google Scholar 

  30. Raev DC (1994) Which left ventricular function is impaired earlier in the evolution of diabetic cardiomyopathy. Diabetes Care 17(7):633–639

    Article  CAS  PubMed  Google Scholar 

  31. Mihm MJ, Seifert JL, Coyle CM, Bauer JA (2001) Diabetes related cardiomyopathy time dependent echocardiographic evaluation in an experimental rat model. Life Sci 69:527–542

    Article  CAS  PubMed  Google Scholar 

  32. DeBlieux PMC, Barbee RW, McDonough KH, Shepherd RE (1993) Exercise training improves cardiac performance in diabetic rats. Proc Soc Exp Biol Med 203(2):209–213

    CAS  PubMed  Google Scholar 

  33. De Angelis KLD, Oliveira AR, Dall Ago P, Peixoto LRA, Gadonski G, Lacchini S, Fernandes TG, Erigoyen MC (2000) Effects of exercise training on autonomic and myocardial dysfunction in streptozotocin-diabetic rats. Braz J Med Biol Res 33:635–641

    PubMed  Google Scholar 

  34. Netticadan T, Temsah RM, Kent A, Elimban V, Dhalla NS (2001) Depressed levels of Ca2+-cycling proteins may underlie sarcoplasmic reticulum dysfunction in the diabetic heart. Diabetes 50:2133–2138

    Article  CAS  PubMed  Google Scholar 

  35. Bidasee KR, Zhang Y, Shao CH, Wang M, Patel KP, Dinçer ÜD, Besch HR (2004) Diabetes increases formation of advanced glycation end products on sarco(endo)plasmic reticumum Ca2+-ATPase. Diabetes 53:463–473

    Article  CAS  PubMed  Google Scholar 

  36. Broderick TL, Poirier P, Gillis M (2005) Exercise training restores abnormal myocardial glucose utilization and cardiac function in diabetes. Diabetes Metab Res Rev 21:44–50

    Article  CAS  PubMed  Google Scholar 

  37. Loganathan R, Bilgen M, Al-Hafez B, Zhero SV, Alenezy MD, Smirnova IV (2007) Exercise training improves cardiac performance in diabetes: in vivo demonstration with quantitative cine-MRI analyses. J Appl Physiol 102:665–672

    Article  PubMed  Google Scholar 

  38. Ziolo MT, Bers DM (2003) The real estate of NOS signalling: location, location, location. Circ Res 92:1279–1281

    Article  CAS  PubMed  Google Scholar 

  39. Khan SA, Lee K, Minhas KM, Gonzalez DR, Raju SV, Tejani AD, Li D, Berkowitz DE, Hare JM (2004) Neuronal nitric oxide synthase negatively regulates xanthine oxidoreductase inhibition of cardiac excitation-contraction coupling. Proc Natl Acad Sci USA 101(45):15944–15948

    Article  CAS  PubMed  Google Scholar 

  40. Desco MC, Asensi M, Márquez R, Martínez-Valls J, Vento M, Pallardó FV, Sastre J, Viña J (2002) Xanthine oxidase is involved in free radical production in type 1 diabetes: protection by allopurinol. Diabetes 51(4):1118–1124

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully thank Pr François Carré and Pr Eric Bellisant for their hospitality, and the Biostatistical PhD Audrey Lavenu for her statistical assistance, from the laboratory of Pharmacology (Faculty of Medicine, Rennes 1). We thank Mrs. Catherine Lemeslif and Christine Dutais from the laboratory of Medical Physiology (Faculty of Medicine, Rennes 1) for their technical assistance. We also thank Dawn C. Harrison and Will Loh (School of Clinical Sciences, University of Liverpool, UK) for their helpful advice for the English translation.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solène Le Douairon Lahaye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Douairon Lahaye, S., Rebillard, A., Zguira, M.S. et al. Effects of exercise training combined with insulin treatment on cardiac NOS1 signaling pathways in type 1 diabetic rats. Mol Cell Biochem 347, 53–62 (2011). https://doi.org/10.1007/s11010-010-0611-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0611-6

Keywords

Navigation