Skip to main content
Log in

Docosahexaenoic acid but not eicosapentaenoic acid withstands dietary cholesterol-induced decreases in platelet membrane fluidity

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

To determine the differenetial effects of docosahexaenoic (DHA) and eicosapentaenoic (EPA) acid on platelet membrane fluidity under hypercholesterolemic conditions. DHA and EPA were orally administered (300 mg/kg body weight.day) to hypercholesterolemic rats for 12 weeks. Membrane fluidity, evaluated by fluorescence polarization of nonpolar 1,6-diphenyl-1,3,5-hexatriene (DPH), of the platelets of high cholesterol (HC; 1%)-fed rats decreased significantly compared with that of the platelets of normocholesterolemic rats. In HC-fed rats, dietary administration of DHA, unlike that of EPA, significantly increased platelet membrane fluidity. A high cholesterol diet significantly increased platelet aggregation, compared with the platelet aggregation of normocholesterolemic rats. DHA administration significantly decreased the aggregation, whereas EPA had no effect. Levels of EPA in the platelets of the EPA-fed HC rats and those of DHA in the platelets of the DHA-fed HC rats increased by 482 and 174%, respectively, compared with those in the platelets of the HC-fed rats. The unsaturation index and the ratio of saturated to (poly)unsaturated fatty acid of the platelet membrane increased only in the DHA-fed rats. The phospholipid content in platelet membranes remained unaltered in all groups, whereas the cholesterol content decreased significantly in DHA-fed rats, resulting in a significant decrease in the cholesterol/phospholipid molar ratio only in the platelet membranes of DHA-fed rats. These results suggest that DHA is a more potent membrane-fluidizer than EPA in withstanding cholesterol-induced decreases in platelet membrane fluidity and a stronger ameliorative modulator of platelet hyperaggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmidt EB, Skou HA, Christensen JH, Dyerberg J: N-3 fatty acids from fish and coronary artery disease: implications for public health. Pub Health Nutr 3: 91–98, 2000

    Article  CAS  Google Scholar 

  2. Hashimoto M, Shinozuka K, Hossain MS, Kwon YM, Tanabe Y, Kunitomo M, Masumura S: Antihypertensive effects of all-cis-5,8,11,14,17-icosapentaenoate of aged rats is associated with an increase in the release of ATP from caudal artery. J Vasc Res 35: 55–62, 1998

    Article  PubMed  CAS  Google Scholar 

  3. Hashimoto M, Shinozuka K, Gamoh S, Tanabe Y, Hossain MS, Kwon YM, Hata N, Misawa Y, Kunitomo M, Masumura S: The hypotensive effect of docosahexaenoic acid is associated with the enhanced release of ATP from caudal artery of aged rats. J Nutr 25: 676–681, 1999

    Google Scholar 

  4. Mori TA, Bao DQ, Burke V, Puddey IB, Beilin LJ: Docosahexaenoic acid but not eicosapentaenoic acid lowers ambulatory blood pressure and heart rate in humans. Hypertension 34: 253–260, 1999

    PubMed  CAS  Google Scholar 

  5. Mori TA, Watts GF, Burke V, Hilme E, Puddey IB, Beilin LJ: Differential effects of eicosapentaenoic acid and docosahexaenoic acid on vascular reactivity of the forearm microcirculation in hyperlipidemic, overweight men. Circulation 102: 1264–1269, 2000

    PubMed  CAS  Google Scholar 

  6. Bates EJ, Ferrante A, Harvey DP, Nandoskar M, Poulos A: Docosahexanoic acid (22:6, n-3) but not eicosapentaenoic acid (20:5, n-3) can induce neutrophil-mediated injury of cultured endothelial cells: involvement of neutrophil elastase. J Leuk Biol 54: 590–598, 1993

    CAS  Google Scholar 

  7. Lokesh BR, German B, Kinsella JE: Differential effects of docosahexaenoic acid and eicosapentaenoic acid on suppression of lipoxygenase pathway in peritoneal macrophages. Biochim Biophys Acta 958: 99–107, 1988

    PubMed  CAS  Google Scholar 

  8. Shiina T, Terano T, Saito J, Tamura Y, Yoshida S: Eicosapentaenoic acid and docosahexaenoic acid suppress the proliferation of vascular smooth muscle cells. Atherosclerosis 104: 95–103, 1993

    Article  PubMed  CAS  Google Scholar 

  9. Hashimoto M, Hossain MS, Yamazaki H, Yazawa K, Masumura S: Effects of eicosapentaenoic acid and docosahexaenoic acid on plasma membrane fluidity of aortic endothelial cells. Lipids 34: 1297–1304, 1999

    Article  PubMed  CAS  Google Scholar 

  10. Ve'ricel E, Calzada C, Chapuy P, Lagarde M: The influence of low intake of n-3 fatty acids on platelets in elderly people. Atherosclerosis 147: 187–192, 1999

    Article  Google Scholar 

  11. Lemaitre D, Ve'ricel E, Poiette A, Lagarde M: Effects of fatty acids on human platelet glutathione peroxidase: possible role of oxidative stress. Biochem Pharmacol 53: 479–486, 1997

    Article  PubMed  CAS  Google Scholar 

  12. Ve'ricel E, Januel C, Carreras M, Moulin P, Lagarde M: Diabetic patients without vascular complications display enhanced basal platelet activation and decreased antioxidant status. Diabetes 53: 1046–1051, 2004

    Google Scholar 

  13. Hossain MS, Hashimoto M, Masumura S: Age-related changes in platelet microviscosity and aggregation in rats. Clin Exp Pharmacol Physiol 26: 426–432, 1999

    Article  PubMed  CAS  Google Scholar 

  14. Hashimoto M, Hossain MS, Shimada T, Yamazakia H, Fujii Y, Shido O: Effects of docosahexaenoic acid on annular lipid fluidity of the rat bile canalicular plasma membrane. J Lipid Res 42: 1160–1168, 2001

    PubMed  CAS  Google Scholar 

  15. Ginsberg BH, Chatterjee P, Yorek MA: Insulin sensitivity is increased in Friend erythroleukemia cells enriched in polyunsaturated fatty acid. Receptor 1: 155–166, 1991

    PubMed  CAS  Google Scholar 

  16. Kuo P, Weinfeld M, Loscalzo J: Effect of membrane fatty acyl composition on LDL metabolism in Hep G2 hepatocytes. Biochemistry 29: 6626–6632, 1990

    Article  PubMed  CAS  Google Scholar 

  17. Ruiz-Gutierrez V, Stiefel P, Villar J, Garcia-Donas MA, Acosta D, Carneado J: Cell membrane fatty acid composition in type 1 (insulin-dependent) diabetic patients: relationship with sodium transport abnormalities and metabolic control. Diabetologia 36: 850–856, 1993

    Article  PubMed  CAS  Google Scholar 

  18. Brown ER, Subbaiah PV: Differential effects of eicosapentaenoic acid and docosahexaenoic acid on human skin fibroblasts. Lipids 29: 825–829, 1994

    PubMed  CAS  Google Scholar 

  19. Fonlupt P, Croset M, Lagarde M: Incorporation of arachidonic and docosahexaenoic acids into phospholipids of rat brain membranes. Neurosci Lett 171: 137–141, 1994

    Article  PubMed  CAS  Google Scholar 

  20. Bazan NG: In: R.J. Wurtman, J.J. Wurtman (eds). Nutrition and the Brain. New York, Raven Press, pp 1–24, 1990

    Google Scholar 

  21. Stubbs CD: In: A. Sinclair, R. Gibson (eds). Essential Fatty Acids and Eicosanoids: 3rd International Congress. America Oil Chemists Society Press, Champaign, IL, pp 116–121, 1992

    Google Scholar 

  22. Hossain MS, Hashimoto M, Gamoh S, Masumura S: Association of age-related decrease in platelet membrane fluidity with platelet lipid peroxide. Life Sci 64: 135–143, 1999

    Article  PubMed  CAS  Google Scholar 

  23. Shatill SJ, Cooper RA: Membrane microviscosity and human platelet function. Biochemistry 15, 4832–4837, 1976

    Article  Google Scholar 

  24. Cooper RA: Influence of increased membrane cholesterol in membrane fluidity and cell function in human red blood cells. J Supramol Struc 8: 413–430, 1978

    Article  CAS  Google Scholar 

  25. Stubbs CD, Smith AD: The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Review on membranes. Biochim Biophys Acta 779: 89–113, 1984

    PubMed  CAS  Google Scholar 

  26. Born GVR: Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 194: 927–929, 1962

    Article  PubMed  CAS  Google Scholar 

  27. Hashimoto M, Hossain MS, Masumura S: Effects of aging on membrane fluidity, lipid and fatty acid compositions, and lipid peroxide levels in rat aortic endothelial cells. Exp Gerontol 34: 687–698, 1999

    Article  PubMed  CAS  Google Scholar 

  28. Mateo CR, Lillio MP, Gonzalez-Rodriguez J, Acuna AU: Molecular order and fluidity of the plasma membrane of human platelets from time resolved fluorescence depolarization. Eur Biophys J 20: 41–52, 1991

    PubMed  CAS  Google Scholar 

  29. Folch J, Lees M, Sloane-Stanely GH: A simple method for the islation and purification of total lipids from animal tissues. J Biol Chem 226: 497–509, 1957

    PubMed  CAS  Google Scholar 

  30. Lepage G and Roy C C: Direct transesterification of all classes of lipids in a one-step reaction. J Lipid Res 27: 114–120, 1986

    PubMed  CAS  Google Scholar 

  31. Kitagawa S, Endo J, Kametani F: Effects of long-chain cis-unsaturated fatty acids and their alcoholic analogs on aggregation of bovine platelets and their relation with membrane fluidity change. Biochim Biophys Acta 818: 391–397, 1985

    Article  PubMed  CAS  Google Scholar 

  32. Abeywardena MY, McLennan PL, Charnock JS: Differential effects of dietary fish oil on myocardial prostaglandin I2 and thromboxane A2 production. Am J Physiol 260: H379–H385, 1991

    PubMed  CAS  Google Scholar 

  33. Morita I, Saito Y, Chang WC, Murota S: Effects of purified eicosapentaenoic acid on arachidonic acid metabolism in cultured murine aortic smooth muscle cells, vessel walls and platelets. Lipids 18: 42–49, 1983

    Article  PubMed  CAS  Google Scholar 

  34. Beynen AC, Schouton JA, Popp-Snijders C: Compensatory changes in the lipid composition of the erythrocyte membrane. Trends Biochem Sci 9: 474, 1984

    Article  CAS  Google Scholar 

  35. Dusserre E, Pulcini T, Bourdillon MC, Ciavatti M, Berthezene F: n-3 fatty acids in smooth muscle cell phospholipids increase membrane cholesterol efflux. Lipids 30: 35–41, 1995

    PubMed  CAS  Google Scholar 

  36. Malle E, Kostner GM: Effects of fish oils on lipid variables and platelet function indices. Prost Leuk Essent Fatty Acids 149: 645–663, 1993

    Article  Google Scholar 

  37. Goodnight SH, Harris WS, Connor WE, Illingworth DR. Polyunsaturated fatty acids, hyperlipidemia, and thrombosis. Arteriosclerosis 2: 87–113, 1982

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michio Hashimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, M., Hossain, S. & Shido, O. Docosahexaenoic acid but not eicosapentaenoic acid withstands dietary cholesterol-induced decreases in platelet membrane fluidity. Mol Cell Biochem 293, 1–8 (2006). https://doi.org/10.1007/s11010-006-0164-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-0164-x

Key words

Navigation