Skip to main content

Advertisement

Log in

IGF and Insulin Receptor Signaling in Breast Cancer

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Major molecular abnormalities in breast cancer include the deregulation of several components of the IGF system. It is well recognized that the epithelial breast cancer cells commonly overexpress the IGF-I receptor while IGF-II is expressed by the tumor stroma. In view to the fact that the IGF-IR has mitogenic, pro-invasive and anti-apoptotic effects and mediates resistance to a variety of anti-cancer therapies, breast cancer is expected to be a candidate to therapeutic approaches aimed to inhibit the IGF-IR. However, there is increasing awareness that IGF system in cancer undergoes signal diversification by various mechanisms. One of these mechanisms is the aberrant expression of insulin receptor (IR) isoform A (IR-A), which is a high affinity receptor for both insulin and IGF-II, in breast cancer cells. Moreover, overexpression of both IGF-IR and IR-A in breast cancer cells, leads to overexpression of hybrid IR/IGF-IR receptors (HRs) as well. Upon binding to IGF-II, both IR-A and HRs may activate unique signaling patterns, which predominantly mediate proliferative effects. A better understanding of IGF system signal diversification in breast cancer has important implications for cancer prevention measures, which should include control of insulin resistance and associated hyperinsulinemia. Moreover, in addition to the IGF-IR, both IR-A and HRs should be also considered as molecular targets for anti-cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

Akt:

Thymoma viral proto-oncogene 1

APS:

Associate protein substrate

ATM:

Ataxia telangiectasia mutated

BAD:

Bcl-2-associated death promoter

Bcl-2:

B-cell lymphoma 2

Bcl-XL :

Basal cell lymphoma-extra large

Brca1:

Breast and ovarian cancer gene 1, early onset

Cbl:

Cas-Br-M (murine) ecotropic retroviral transforming sequence

CDK4:

Cyclin-dependent kinase 4

DMBA:

7,12-Dimethylbenz(a)antracene

4E-BP1:

4E-binding protein 1

EGFR:

Epidermal growth factor receptor

HER-2:

Human epidermal growth factor receptor-2

ER:

Estrogen receptor

Erk1/2:

Mitogen activated protein kinases

ES:

Embryonic stem cells

Fak:

Focal adhesion kinase

FKHR:

Forkhead in human rabdomyosarcoma

GAB-1:

GRB2-associated binding protein 1

GDP:

Guanosine diphosphate

GH:

Growth hormone

GLUT 4:

Glucose transporter protein 4

GTP:

Guanosine-5′-triphosphate

HIF1:

Hypoxia inducible factor 1

HR-A:

IR/IGF-IR hybrid A

HR-B:

IR/IGF-IR hybrid B

HRs:

IR/IGF-IR hybrid receptors

IGFBP3:

Insulin-like growth factor binding protein 3

IGF-IR:

IGF-I receptor

IGF-I:

Insulin-like growth factor I

IGF-II:

Insulin-like growth factor II

IGFs:

Insulin-like growth factors

IR:

Insulin receptor

IR-A:

Insulin receptor isoform A

IR-B:

Insulin receptor isoform B

IRR:

Insulin receptor-related receptor

JNK:

Jun N terminal kinase

LOI:

Loss of genomic imprinting

MAD2:

Mitotic arrest deficient 2

MMP:

Matrix metalloprotease

MMTV:

Mouse mammary tumor virus

MAPK:

Mitogen activated protein kinase

M6P:

Mannose-6-phosphate

M6P/IGF-IIR:

Mannose-6-phosphate/IGF-II receptor

mSOS:

Son of sevenless protein homolog

mTOR:

Mammalian target of rapamycin

OS:

Overall survival

PKB:

Protein kinase B

PKC:

Protein kinase C

PH:

Pleckstrin homology

PI3K:

Phosphatidylinositol 3-kinase

PKC:

Protein kinase C

PKD-1:

3-Phosphoinositide-dependent protein kinase 1

PIP3:

Phosphatidylinositol (3,4,5)-trisphosphate

Ras:

Harvey rat sarcoma virus oncogene 1

RFS:

Relapse free survival

S6K1:

Ribosomal S6 kinase 1

Src:

Rous sarcoma oncogene

SH2:

Src-homology 2 domain

Shc:

Src/collagen homology proteins

TrkC:

Tyrosine kinase C receptor

References

  1. Stewart CE, Rotwein P. Growth, differentiation, and survival: multiple physiological functions for insulin-like growth factors. Physiol Rev. 1996;76(4):1005–26.

    PubMed  CAS  Google Scholar 

  2. Bartke A. Minireview: role of the growth hormone/insulin-like growth factor system in mammalian aging. Endocrinology. 2005;146(9):3718–23. doi:10.1210/en.2005-0411.

    PubMed  CAS  Google Scholar 

  3. Morgan DO, Edman JC, Standring DN, Fried VA, Smith MC, Roth RA, et al. Insulin-like growth factor II receptor as a multifunctional binding protein. Nature. 1987;329(6137):301–7. doi:10.1038/329301a0.

    PubMed  CAS  Google Scholar 

  4. Pollak MN, Schernhammer ES, Hankinson SE. Insulin-like growth factors and neoplasia. Nat Rev Cancer. 2004;4(7):505–18. doi:10.1038/nrc1387.

    PubMed  CAS  Google Scholar 

  5. LeRoith D, Roberts CT Jr. The insulin-like growth factor system and cancer. Cancer Lett. 2003;195(2):127–37.

    PubMed  CAS  Google Scholar 

  6. Hankinson SE, Willett WC, Colditz GA, Hunter DJ, Michaud DS, Deroo B, et al. Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet. 1998;351(9113):1393–6. doi:10.1016/S0140-6736(97)10384-1.

    PubMed  CAS  Google Scholar 

  7. Ma J, Pollak MN, Giovannucci E, Chan JM, Tao Y, Hennekens CH, et al. Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3. J Natl Cancer Inst. 1999;91(7):620–5. doi:10.1093/jnci/91.7.620.

    PubMed  CAS  Google Scholar 

  8. Chan JM, Stampfer MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P, et al. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science. 1998;279(5350):563–6. doi:10.1126/science.279.5350.563.

    PubMed  CAS  Google Scholar 

  9. Yu H, Spitz MR, Mistry J, Gu J, Hong WK, Wu X. Plasma levels of insulin-like growth factor-I and lung cancer risk: a case–control analysis. J Natl Cancer Inst. 1999;91(2):151–6. doi:10.1093/jnci/91.2.151.

    PubMed  CAS  Google Scholar 

  10. Carboni JM, Lee AV, Hadsell DL, Rowley BR, Lee FY, Bol DK, et al. Tumor development by transgenic expression of a constitutively active insulin-like growth factor I receptor. Cancer Res. 2005;65(9):3781–7. doi:10.1158/0008-5472.CAN-04-4602.

    PubMed  CAS  Google Scholar 

  11. Jones RA, Campbell CI, Gunther EJ, Chodosh LA, Petrik JJ, Khokha R, et al. Transgenic overexpression of IGF-IR disrupts mammary ductal morphogenesis and induces tumor formation. Oncogene. 2007;26(11):1636–44. doi:10.1038/sj.onc.1209955.

    PubMed  CAS  Google Scholar 

  12. DiGiovanni J, Kiguchi K, Frijhoff A, Wilker E, Bol DK, Beltran L, et al. Deregulated expression of insulin-like growth factor 1 in prostate epithelium leads to neoplasia in transgenic mice. Proc Natl Acad Sci U S A. 2000;97(7):3455–60. doi:10.1073/pnas.97.7.3455.

    PubMed  CAS  Google Scholar 

  13. Hadsell DL, Murphy KL, Bonnette SG, Reece N, Laucirica R, Rosen JM. Cooperative interaction between mutant p53 and des(1–3)IGF-I accelerates mammary tumorigenesis. Oncogene. 2000;19(7):889–98. doi:10.1038/sj.onc.1203386.

    PubMed  CAS  Google Scholar 

  14. Bates P, Fisher R, Ward A, Richardson L, Hill DJ, Graham CF. Mammary cancer in transgenic mice expressing insulin-like growth factor II (IGF-II). Br J Cancer. 1995;72(5):1189–93.

    PubMed  CAS  Google Scholar 

  15. Moorehead RA, Fata JE, Johnson MB, Khokha R. Inhibition of mammary epithelial apoptosis and sustained phosphorylation of Akt/PKB in MMTV-IGF-II transgenic mice. Cell Death Differ. 2001;8(1):16–29. doi:10.1038/sj.cdd.4400762.

    PubMed  CAS  Google Scholar 

  16. Byrd JC, Devi GR, de Souza AT, Jirtle RL, MacDonald RG. Disruption of ligand binding to the insulin-like growth factor II/mannose 6-phosphate receptor by cancer-associated missense mutations. J Biol Chem. 1999;274(34):24408–16. doi:10.1074/jbc.274.34.24408.

    PubMed  CAS  Google Scholar 

  17. Belfiore A. The role of insulin receptor isoforms and hybrid insulin/IGF-I receptors in human cancer. Curr Pharm Des. 2007;13(7):671–86. doi:10.2174/138161207780249173.

    PubMed  CAS  Google Scholar 

  18. Vigneri P, Frasca F, Sciacca L, Frittitta L, Vigneri R. Obesity and cancer. Nutr Metab Cardiovasc Dis. 2006;16(1):1–7. doi:10.1016/j.numecd.2005.10.013.

    PubMed  CAS  Google Scholar 

  19. Strickler HD, Wylie-Rosett J, Rohan T, Hoover DR, Smoller S, Burk RD, et al. The relation of type 2 diabetes and cancer. Diabetes Technol Ther. 2001;3(2):263–74. doi:10.1089/152091501300209633.

    PubMed  CAS  Google Scholar 

  20. Coughlin SS, Calle EE, Teras LR, Petrelli J, Thun MJ. Diabetes mellitus as a predictor of cancer mortality in a large cohort of US adults. Am J Epidemiol. 2004;159(12):1160–7. doi:10.1093/aje/kwh161.

    PubMed  Google Scholar 

  21. Kaaks R, Lukanova A. Effects of weight control and physical activity in cancer prevention: role of endogenous hormone metabolism. Ann N Y Acad Sci. 2002;963:268–81.

    PubMed  CAS  Google Scholar 

  22. Vainio H, Kaaks R, Bianchini F. Weight control and physical activity in cancer prevention: international evaluation of the evidence. Eur J Cancer Prev. 2002;11(Suppl 2):S94–100.

    PubMed  Google Scholar 

  23. Fair AM, Dai Q, Shu XO, Matthews CE, Yu H, Jin F, et al. Energy balance, insulin resistance biomarkers, and breast cancer risk. Cancer Detect Prev. 2007;31(3):214–9. doi:10.1016/j.cdp.2007.04.003.

    PubMed  CAS  Google Scholar 

  24. Pisani P. Hyper-insulinaemia and cancer, meta-analyses of epidemiological studies. Arch Physiol Biochem. 2008;114(1):63–70. doi:10.1080/13813450801954451.

    PubMed  CAS  Google Scholar 

  25. Frasca F, Pandini G, Sciacca L, Pezzino V, Squatrito S, Belfiore A, et al. The role of insulin receptors and IGF-I receptors in cancer and other diseases. Arch Physiol Biochem. 2008;114(1):23–37. doi:10.1080/13813450801969715.

    PubMed  CAS  Google Scholar 

  26. Mosthaf L, Grako K, Dull TJ, Coussens L, Ullrich A, McClain DA. Functionally distinct insulin receptors generated by tissue-specific alternative splicing. EMBO J. 1990;9(8):2409–13.

    PubMed  CAS  Google Scholar 

  27. Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R, Costantino A, et al. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol. 1999;19(5):3278–88.

    PubMed  CAS  Google Scholar 

  28. Shier P, Watt VM. Primary structure of a putative receptor for a ligand of the insulin family. J Biol Chem. 1989;264(25):14605–8.

    PubMed  CAS  Google Scholar 

  29. Andersen AS, Wiberg FC, Kjeldsen T. Localization of specific amino acids contributing to insulin specificity of the insulin receptor. Ann N Y Acad Sci. 1995;766:466–8. doi:10.1111/j.1749-6632.1995.tb26696.x.

    PubMed  CAS  Google Scholar 

  30. Mynarcik DC, Williams PF, Schaffer L, Yu GQ, Whittaker J. Identification of common ligand binding determinants of the insulin and insulin-like growth factor 1 receptors. Insights into mechanisms of ligand binding. J Biol Chem. 1997;272(30):18650–5. doi:10.1074/jbc.272.30.18650.

    PubMed  CAS  Google Scholar 

  31. Yip CC, Hsu H, Patel RG, Hawley DM, Maddux BA, Goldfine ID. Localization of the insulin-binding site to the cysteine-rich region of the insulin receptor alpha-subunit. Biochem Biophys Res Commun. 1988;157(1):321–9. doi:10.1016/S0006-291X(88)80050-0.

    PubMed  CAS  Google Scholar 

  32. Whittaker J, Groth AV, Mynarcik DC, Pluzek L, Gadsboll VL, Whittaker LJ. Alanine scanning mutagenesis of a type 1 insulin-like growth factor receptor ligand binding site. J Biol Chem. 2001;276(47):43980–6. doi:10.1074/jbc.M102863200.

    PubMed  CAS  Google Scholar 

  33. Ullrich A, Gray A, Tam AW, Yang-Feng T, Tsubokawa M, Collins C, et al. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 1986;5(10):2503–12.

    PubMed  CAS  Google Scholar 

  34. Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol. 2001;11(4):213–21. doi:10.1016/S0960-9822(01)00068-9.

    PubMed  CAS  Google Scholar 

  35. Drakas R, Tu X, Baserga R. Control of cell size through phosphorylation of upstream binding factor 1 by nuclear phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A. 2004;101(25):9272–6. doi:10.1073/pnas.0403328101.

    PubMed  CAS  Google Scholar 

  36. Hubbard SR, Wei L, Ellis L, Hendrickson WA. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature. 1994;372(6508):746–54. doi:10.1038/372746a0.

    PubMed  CAS  Google Scholar 

  37. Pawson T. Signal transduction. Look at a tyrosine kinase. Nature. 1994;372(6508):726–7. doi:10.1038/372726a0.

    PubMed  CAS  Google Scholar 

  38. Lee J, O’Hare T, Pilch PF, Shoelson SE. Insulin receptor autophosphorylation occurs asymmetrically. J Biol Chem. 1993;268(6):4092–8.

    PubMed  CAS  Google Scholar 

  39. White MF, Shoelson SE, Keutmann H, Kahn CR. A cascade of tyrosine autophosphorylation in the beta-subunit activates the phosphotransferase of the insulin receptor. J Biol Chem. 1988;263(6):2969–80.

    PubMed  CAS  Google Scholar 

  40. Ellis L, Clauser E, Morgan DO, Edery M, Roth RA, Rutter WJ. Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxyglucose. Cell. 1986;45(5):721–32. doi:10.1016/0092-8674(86)90786-5.

    PubMed  CAS  Google Scholar 

  41. Wilden PA, Kahn CR, Siddle K, White MF. Insulin receptor kinase domain autophosphorylation regulates receptor enzymatic function. J Biol Chem. 1992;267(23):16660–8.

    PubMed  CAS  Google Scholar 

  42. Chiang SH, Baumann CA, Kanzaki M, Thurmond DC, Watson RT, Neudauer CL, et al. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature. 2001;410(6831):944–8. doi:10.1038/35073608.

    PubMed  CAS  Google Scholar 

  43. White MF. The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol Cell Biochem. 1998;182(1–2):3–11. doi:10.1023/A:1006806722619.

    PubMed  CAS  Google Scholar 

  44. Backer JM, Myers MG Jr, Shoelson SE, Chin DJ, Sun XJ, Miralpeix M, et al. Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J. 1992;11(9):3469–79.

    PubMed  CAS  Google Scholar 

  45. Skolnik EY, Lee CH, Batzer A, Vicentini LM, Zhou M, Daly R, et al. The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of ras signalling. EMBO J. 1993;12(5):1929–36.

    PubMed  CAS  Google Scholar 

  46. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91(2):231–41. doi:10.1016/S0092-8674(00)80405-5.

    PubMed  CAS  Google Scholar 

  47. Barthel A, Schmoll D, Unterman TG. FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab. 2005;16(4):183–9. doi:10.1016/j.tem.2005.03.010.

    PubMed  CAS  Google Scholar 

  48. Nakae J, Park BC, Accili D. Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. J Biol Chem. 1999;274(23):15982–5. doi:10.1074/jbc.274.23.15982.

    PubMed  CAS  Google Scholar 

  49. Myatt SS, Lam EW. The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer. 2007;7(11):847–59. doi:10.1038/nrc2223.

    PubMed  CAS  Google Scholar 

  50. Zou Y, Tsai WB, Cheng CJ, Hsu C, Chung YM, Li PC, et al. Forkhead box transcription factor FOXO3a suppresses estrogen-dependent breast cancer cell proliferation and tumorigenesis. Breast Cancer Res. 2008;10(1):R21. doi:10.1186/bcr1872.

    PubMed  Google Scholar 

  51. Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr Opin Cell Biol. 2005;17(6):596–603. doi:10.1016/j.ceb.2005.09.009.

    PubMed  CAS  Google Scholar 

  52. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926–45. doi:10.1101/gad.1212704.

    PubMed  CAS  Google Scholar 

  53. Wang X, Proud CG. The mTOR pathway in the control of protein synthesis. Physiology (Bethesda). 2006;21:362–9. doi:10.1152/physiol.00024.2006.

    CAS  Google Scholar 

  54. Levine AJ, Feng Z, Mak TW, You H, Jin S. Coordination and communication between the p53 and IGF-1–AKT–TOR signal transduction pathways. Genes Dev. 2006;20(3):267–75. doi:10.1101/gad.1363206.

    PubMed  CAS  Google Scholar 

  55. Ceresa BP, Pessin JE. Insulin regulation of the Ras activation/inactivation cycle. Mol Cell Biochem. 1998;182(1–2):23–9. doi:10.1023/A:1006819008507.

    PubMed  CAS  Google Scholar 

  56. Sasaoka T, Kobayashi M. The functional significance of Shc in insulin signaling as a substrate of the insulin receptor. Endocr J. 2000;47(4):373–81. doi:10.1507/endocrj.47.373.

    PubMed  CAS  Google Scholar 

  57. Kondoh K, Torii S, Nishida E. Control of MAP kinase signaling to the nucleus. Chromosoma. 2005;114(2):86–91. doi:10.1007/s00412-005-0341-9.

    PubMed  CAS  Google Scholar 

  58. Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev. 2004;68(2):320–44. doi:10.1128/MMBR.68.2.320-344.2004.

    PubMed  CAS  Google Scholar 

  59. Brunet A, Roux D, Lenormand P, Dowd S, Keyse S, Pouyssegur J. Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO J. 1999;18(3):664–74. doi:10.1093/emboj/18.3.664.

    PubMed  CAS  Google Scholar 

  60. Monno S, Newman MV, Cook M, Lowe WL Jr. Insulin-like growth factor I activates c-Jun N-terminal kinase in MCF-7 breast cancer cells. Endocrinology. 2000;141(2):544–50. doi:10.1210/en.141.2.544.

    PubMed  CAS  Google Scholar 

  61. Mamay CL, Mingo-Sion AM, Wolf DM, Molina MD, Van Den Berg CL. An inhibitory function for JNK in the regulation of IGF-I signaling in breast cancer. Oncogene. 2003;22(4):602–14. doi:10.1038/sj.onc.1206186.

    PubMed  CAS  Google Scholar 

  62. Heron-Milhavet L, Karas M, Goldsmith CM, Baum BJ, LeRoith D. Insulin-like growth factor-I (IGF-I) receptor activation rescues UV-damaged cells through a p38 signaling pathway. Potential role of the IGF-I receptor in DNA repair. J Biol Chem. 2001;276(21):18185–92. doi:10.1074/jbc.M011490200.

    PubMed  CAS  Google Scholar 

  63. Bartucci M, Morelli C, Mauro L, Ando S, Surmacz E. Differential insulin-like growth factor I receptor signaling and function in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. Cancer Res. 2001;61(18):6747–54.

    PubMed  CAS  Google Scholar 

  64. Xu B, Bird VG, Miller WT. Substrate specificities of the insulin and insulin-like growth factor 1 receptor tyrosine kinase catalytic domains. J Biol Chem. 1995;270(50):29825–30. doi:10.1074/jbc.270.50.29825.

    PubMed  CAS  Google Scholar 

  65. Zapf A, Hsu D, Olefsky JM. Comparison of the intracellular itineraries of insulin-like growth factor-I and insulin and their receptors in Rat-1 fibroblasts. Endocrinology. 1994;134(6):2445–52. doi:10.1210/en.134.6.2445.

    PubMed  CAS  Google Scholar 

  66. Mastick CC, Brady MJ, Printen JA, Ribon V, Saltiel AR. Spatial determinants of specificity in insulin action. Mol Cell Biochem. 1998;182(1–2):65–71. doi:10.1023/A:1006835430797.

    PubMed  CAS  Google Scholar 

  67. Najjar SM, Blakesley VA, Li Calzi S, Kato H, LeRoith D, Choice CV. Differential phosphorylation of pp120 by insulin and insulin-like growth factor-1 receptors: role for the C-terminal domain of the beta-subunit. Biochemistry. 1997;36(22):6827–34. doi:10.1021/bi962634h.

    PubMed  CAS  Google Scholar 

  68. O’Neill TJ, Zhu Y, Gustafson TA. Interaction of MAD2 with the carboxyl terminus of the insulin receptor but not with the IGFIR. Evidence for release from the insulin receptor after activation. J Biol Chem. 1997;272(15):10035–40. doi:10.1074/jbc.272.15.10035.

    PubMed  CAS  Google Scholar 

  69. Baumann CA, Ribon V, Kanzaki M, Thurmond DC, Mora S, Shigematsu S, et al. CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature. 2000;407(6801):202–7. doi:10.1038/35025089.

    PubMed  CAS  Google Scholar 

  70. Hu J, Liu J, Ghirlando R, Saltiel AR, Hubbard SR. Structural basis for recruitment of the adaptor protein APS to the activated insulin receptor. Mol Cell. 2003;12(6):1379–89. doi:10.1016/S1097-2765(03)00487-8.

    PubMed  CAS  Google Scholar 

  71. Liu J, Kimura A, Baumann CA, Saltiel AR. APS facilitates c-Cbl tyrosine phosphorylation and GLUT4 translocation in response to insulin in 3T3-L1 adipocytes. Mol Cell Biol. 2002;22(11):3599–609. doi:10.1128/MCB.22.11.3599-3609.2002.

    PubMed  CAS  Google Scholar 

  72. Kanzaki M. Insulin receptor signals regulating GLUT4 translocation and actin dynamics. Endocr J. 2006;53(3):267–93. doi:10.1507/endocrj.KR-65.

    PubMed  CAS  Google Scholar 

  73. Butler AA, Blakesley VA, Koval A, deJong R, Groffen J, LeRoith D. In vivo regulation of CrkII and CrkL proto-oncogenes in the uterus by insulin-like growth factor-I. Differential effects on tyrosine phosphorylation and association with paxillin. J Biol Chem. 1997;272(44):27660–4. doi:10.1074/jbc.272.44.27660.

    PubMed  CAS  Google Scholar 

  74. Koval AP, Blakesley VA, Roberts CT Jr, Zick Y, Leroith D. Interaction in vitro of the product of the c-Crk-II proto-oncogene with the insulin-like growth factor I receptor. Biochem J. 1998;330(Pt 2):923–32.

    PubMed  CAS  Google Scholar 

  75. Klammt J, Barnikol-Oettler A, Kiess W. Mutational analysis of the interaction between insulin receptor and IGF-I receptor with c-Crk and Crk-L in a yeast two-hybrid system. Biochem Biophys Res Commun. 2004;325(1):183–90. doi:10.1016/j.bbrc.2004.10.018.

    PubMed  CAS  Google Scholar 

  76. Furlanetto RW, Dey BR, Lopaczynski W, Nissley SP. 14-3-3 proteins interact with the insulin-like growth factor receptor but not the insulin receptor. Biochem J. 1997;327(Pt 3):765–71.

    PubMed  CAS  Google Scholar 

  77. Dupont J, Khan J, Qu BH, Metzler P, Helman L, LeRoith D. Insulin and IGF-1 induce different patterns of gene expression in mouse fibroblast NIH-3T3 cells: identification by cDNA microarray analysis. Endocrinology. 2001;142(11):4969–75. doi:10.1210/en.142.11.4969.

    PubMed  CAS  Google Scholar 

  78. Mitra SK, Hanson DA, Schlaepfer DD. Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol. 2005;6(1):56–68. doi:10.1038/nrm1549.

    PubMed  CAS  Google Scholar 

  79. Pillay TS, Sasaoka T, Olefsky JM. Insulin stimulates the tyrosine dephosphorylation of pp125 focal adhesion kinase. J Biol Chem. 1995;270(3):991–4. doi:10.1074/jbc.270.3.991.

    PubMed  CAS  Google Scholar 

  80. Frasca F, Pandini G, Malaguarnera R, Mandarino A, Messina RL, Sciacca L, et al. Role of c-Abl in directing metabolic versus mitogenic effects in insulin receptor signaling. J Biol Chem. 2007;282(36):26077–88. doi:10.1074/jbc.M705008200.

    PubMed  CAS  Google Scholar 

  81. Urso B, Cope DL, Kalloo-Hosein HE, Hayward AC, Whitehead JP, O’Rahilly S, et al. Differences in signaling properties of the cytoplasmic domains of the insulin receptor and insulin-like growth factor receptor in 3T3-L1 adipocytes. J Biol Chem. 1999;274(43):30864–73. doi:10.1074/jbc.274.43.30864.

    PubMed  CAS  Google Scholar 

  82. Siddle K, Urso B, Niesler CA, Cope DL, Molina L, Surinya KH, et al. Specificity in ligand binding and intracellular signalling by insulin and insulin-like growth factor receptors. Biochem Soc Trans. 2001;29(Pt 4):513–25. doi:10.1042/BST0290513.

    PubMed  CAS  Google Scholar 

  83. Kornfeld S. Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu Rev Biochem. 1992;61:307–30. doi:10.1146/annurev.bi.61.070192.001515.

    PubMed  CAS  Google Scholar 

  84. Oka Y, Rozek LM, Czech MP. Direct demonstration of rapid insulin-like growth factor II. Receptor internalization and recycling in rat adipocytes. Insulin stimulates 125I-insulin-like growth factor II degradation by modulating the IGF-II receptor recycling process. J Biol Chem. 1985;260(16):9435–42.

    PubMed  CAS  Google Scholar 

  85. Wang ZQ, Fung MR, Barlow DP, Wagner EF. Regulation of embryonic growth and lysosomal targeting by the imprinted Igf2/Mpr gene. Nature. 1994;372(6505):464–7. doi:10.1038/372464a0.

    PubMed  CAS  Google Scholar 

  86. Lau MM, Stewart CE, Liu Z, Bhatt H, Rotwein P, Stewart CL. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. Genes Dev. 1994;8(24):2953–63. doi:10.1101/gad.8.24.2953.

    PubMed  CAS  Google Scholar 

  87. Zaina S, Squire S. The soluble type 2 insulin-like growth factor (IGF-II) receptor reduces organ size by IGF-II-mediated and IGF-II-independent mechanisms. J Biol Chem. 1998;273(44):28610–6. doi:10.1074/jbc.273.44.28610.

    PubMed  CAS  Google Scholar 

  88. Wutz A, Theussl HC, Dausman J, Jaenisch R, Barlow DP, Wagner EF. Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice. Development. 2001;128(10):1881–7.

    PubMed  CAS  Google Scholar 

  89. Christoforidis A, Maniadaki I, Stanhope R. Growth hormone/insulin-like growth factor-1 axis during puberty. Pediatr Endocrinol Rev. 2005;3(1):5–10.

    PubMed  Google Scholar 

  90. Ruan W, Newman CB, Kleinberg DL. Intact and amino-terminally shortened forms of insulin-like growth factor I induce mammary gland differentiation and development. Proc Natl Acad Sci U S A. 1992;89(22):10872–6. doi:10.1073/pnas.89.22.10872.

    PubMed  CAS  Google Scholar 

  91. Ruan W, Powell-Braxton L, Kopchick JJ, Kleinberg DL. Evidence that insulin-like growth factor I and growth hormone are required for prostate gland development. Endocrinology. 1999;140(5):1984–9. doi:10.1210/en.140.5.1984.

    PubMed  CAS  Google Scholar 

  92. Probst-Hensch NM, Yuan JM, Stanczyk FZ, Gao YT, Ross RK, Yu MC. IGF-1, IGF-2 and IGFBP-3 in prediagnostic serum: association with colorectal cancer in a cohort of Chinese men in Shanghai. Br J Cancer. 2001;85(11):1695–9. doi:10.1054/bjoc.2001.2172.

    PubMed  CAS  Google Scholar 

  93. Zhao H, Grossman HB, Spitz MR, Lerner SP, Zhang K, Wu X. Plasma levels of insulin-like growth factor-1 and binding protein-3, and their association with bladder cancer risk. J Urol. 2003;169(2):714–7. doi:10.1016/S0022-5347(05)63999-7.

    PubMed  CAS  Google Scholar 

  94. Moon JW, Chang YS, Ahn CW, Yoo KN, Shin JH, Kong JH, et al. Promoter −202 A/C polymorphism of insulin-like growth factor binding protein-3 gene and non-small cell lung cancer risk. Int J Cancer. 2006;118(2):353–6. doi:10.1002/ijc.21339.

    PubMed  CAS  Google Scholar 

  95. Zecevic M, Amos CI, Gu X, Campos IM, Jones JS, Lynch PM, et al. IGF1 gene polymorphism and risk for hereditary nonpolyposis colorectal cancer. J Natl Cancer Inst. 2006;98(2):139–43.

    Article  PubMed  CAS  Google Scholar 

  96. Wagner K, Hemminki K, Israelsson E, Grzybowska E, Soderberg M, Pamula J, et al. Polymorphisms in the IGF-1 and IGFBP 3 promoter and the risk of breast cancer. Breast Cancer Res Treat. 2005;92(2):133–40. doi:10.1007/s10549-005-2417-x.

    PubMed  CAS  Google Scholar 

  97. Yu H, Li BD, Smith M, Shi R, Berkel HJ, Kato I. Polymorphic CA repeats in the IGF-I gene and breast cancer. Breast Cancer Res Treat. 2001;70(2):117–22. doi:10.1023/A:1012947027213.

    PubMed  CAS  Google Scholar 

  98. Habuchi T. Common genetic polymorphisms and prognosis of sporadic cancers: prostate cancer as a model. Future Oncol. 2006;2(2):233–45. doi:10.2217/14796694.2.2.233.

    PubMed  CAS  Google Scholar 

  99. Cui H, Cruz-Correa M, Giardiello FM, Hutcheon DF, Kafonek DR, Brandenburg S, et al. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science. 2003;299(5613):1753–5. doi:10.1126/science.1080902.

    PubMed  CAS  Google Scholar 

  100. Feinberg AP. Genomic imprinting and gene activation in cancer. Nat Genet. 1993;4(2):110–3. doi:10.1038/ng0693-110.

    PubMed  CAS  Google Scholar 

  101. Samani AA, Yakar S, LeRoith D, Brodt P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev. 2007;28(1):20–47. doi:10.1210/er.2006-0001.

    PubMed  CAS  Google Scholar 

  102. Hakam A, Yeatman TJ, Lu L, Mora L, Marcet G, Nicosia SV, et al. Expression of insulin-like growth factor-1 receptor in human colorectal cancer. Hum Pathol. 1999;30(10):1128–33. doi:10.1016/S0046-8177(99)90027-8.

    PubMed  CAS  Google Scholar 

  103. Gicquel C, Bertagna X, Gaston V, Coste J, Louvel A, Baudin E, et al. Molecular markers and long-term recurrences in a large cohort of patients with sporadic adrenocortical tumors. Cancer Res. 2001;61(18):6762–7.

    PubMed  CAS  Google Scholar 

  104. Liu JL, Yakar S, LeRoith D. Conditional knockout of mouse insulin-like growth factor-1 gene using the Cre/loxP system. Proc Soc Exp Biol Med. 2000;223(4):344–51. doi:10.1046/j.1525-1373.2000.22349.x.

    PubMed  CAS  Google Scholar 

  105. Wu Y, Yakar S, Zhao L, Hennighausen L, LeRoith D. Circulating insulin-like growth factor-I levels regulate colon cancer growth and metastasis. Cancer Res. 2002;62(4):1030–5.

    PubMed  CAS  Google Scholar 

  106. Wu Y, Cui K, Miyoshi K, Hennighausen L, Green JE, Setser J, et al. Reduced circulating insulin-like growth factor I levels delay the onset of chemically and genetically induced mammary tumors. Cancer Res. 2003;63(15):4384–8.

    PubMed  CAS  Google Scholar 

  107. Moore T, Carbajal S, Beltran L, Perkins SN, Yakar S, Leroith D, et al. Reduced susceptibility to two-stage skin carcinogenesis in mice with low circulating insulin-like growth factor I levels. Cancer Res. 2008;68(10):3680–8. doi:10.1158/0008-5472.CAN-07-6271.

    PubMed  CAS  Google Scholar 

  108. Dunn SE, Kari FW, French J, Leininger JR, Travlos G, Wilson R, et al. Dietary restriction reduces insulin-like growth factor I levels, which modulates apoptosis, cell proliferation, and tumor progression in p53-deficient mice. Cancer Res. 1997;57(21):4667–72.

    PubMed  CAS  Google Scholar 

  109. Zhang D, Bar-Eli M, Meloche S, Brodt P. Dual regulation of MMP-2 expression by the type 1 insulin-like growth factor receptor: the phosphatidylinositol 3-kinase/Akt and Raf/ERK pathways transmit opposing signals. J Biol Chem. 2004;279(19):19683–90. doi:10.1074/jbc.M313145200.

    PubMed  CAS  Google Scholar 

  110. Dupont J, Pierre A, Froment P, Moreau C. The insulin-like growth factor axis in cell cycle progression. Horm Metab Res. 2003;35(11–12):740–50.

    PubMed  CAS  Google Scholar 

  111. Coats S, Flanagan WM, Nourse J, Roberts JM. Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science. 1996;272(5263):877–80. doi:10.1126/science.272.5263.877.

    PubMed  CAS  Google Scholar 

  112. O’Connor R, Fennelly C, Krause D. Regulation of survival signals from the insulin-like growth factor-I receptor. Biochem Soc Trans. 2000;28(2):47–51.

    PubMed  CAS  Google Scholar 

  113. Stawowy P, Kallisch H, Kilimnik A, Margeta C, Seidah NG, Chretien M, et al. Proprotein convertases regulate insulin-like growth factor 1-induced membrane-type 1 matrix metalloproteinase in VSMCs via endoproteolytic activation of the insulin-like growth factor-1 receptor. Biochem Biophys Res Commun. 2004;321(3):531–8. doi:10.1016/j.bbrc.2004.07.001.

    PubMed  CAS  Google Scholar 

  114. Catrina SB, Botusan IR, Rantanen A, Catrina AI, Pyakurel P, Savu O, et al. Hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha are expressed in kaposi sarcoma and modulated by insulin-like growth factor-I. Clin Cancer Res. 2006;12(15):4506–14. doi:10.1158/1078-0432.CCR-05-2473.

    PubMed  CAS  Google Scholar 

  115. Cosaceanu D, Budiu RA, Carapancea M, Castro J, Lewensohn R, Dricu A. Ionizing radiation activates IGF-1R triggering a cytoprotective signaling by interfering with Ku-DNA binding and by modulating Ku86 expression via a p38 kinase-dependent mechanism. Oncogene. 2007;26(17):2423–34. doi:10.1038/sj.onc.1210037.

    PubMed  CAS  Google Scholar 

  116. Gooch JL, Van Den Berg CL, Yee D. Insulin-like growth factor (IGF)-I rescues breast cancer cells from chemotherapy-induced cell death-proliferative and anti-apoptotic effects. Breast Cancer Res Treat. 1999;56(1):1–10. doi:10.1023/A:1006208721167.

    PubMed  CAS  Google Scholar 

  117. Ouban A, Muraca P, Yeatman T, Coppola D. Expression and distribution of insulin-like growth factor-1 receptor in human carcinomas. Hum Pathol. 2003;34(8):803–8. doi:10.1016/S0046-8177(03)00291-0.

    PubMed  CAS  Google Scholar 

  118. Baserga R, Peruzzi F, Reiss K. The IGF-1 receptor in cancer biology. Int J Cancer. 2003;107(6):873–7. doi:10.1002/ijc.11487.

    PubMed  CAS  Google Scholar 

  119. Tao Y, Pinzi V, Bourhis J, Deutsch E. Mechanisms of disease: signaling of the insulin-like growth factor 1 receptor pathway—therapeutic perspectives in cancer. Nat Clin Pract Oncol. 2007;4(10):591–602. doi:10.1038/ncponc0934.

    PubMed  CAS  Google Scholar 

  120. Kaleko M, Rutter WJ, Miller AD. Overexpression of the human insulinlike growth factor I receptor promotes ligand-dependent neoplastic transformation. Mol Cell Biol. 1990;10(2):464–73.

    PubMed  CAS  Google Scholar 

  121. Sell C, Dumenil G, Deveaud C, Miura M, Coppola D, DeAngelis T, et al. Effect of a null mutation of the insulin-like growth factor I receptor gene on growth and transformation of mouse embryo fibroblasts. Mol Cell Biol. 1994;14(6):3604–12.

    PubMed  CAS  Google Scholar 

  122. Miura M, Surmacz E, Burgaud JL, Baserga R. Different effects on mitogenesis and transformation of a mutation at tyrosine 1251 of the insulin-like growth factor I receptor. J Biol Chem. 1995;270(38):22639–44. doi:10.1074/jbc.270.38.22639.

    PubMed  CAS  Google Scholar 

  123. Liu JL, Blakesley VA, Gutkind JS, LeRoith D. The constitutively active mutant Galpha13 transforms mouse fibroblast cells deficient in insulin-like growth factor-I receptor. J Biol Chem. 1997;272(47):29438–41. doi:10.1074/jbc.272.47.29438.

    PubMed  CAS  Google Scholar 

  124. Sutherland BW, Knoblaugh SE, Kaplan-Lefko PJ, Wang F, Holzenberger M, Greenberg NM. Conditional deletion of insulin-like growth factor-I receptor in prostate epithelium. Cancer Res. 2008;68(9):3495–504. doi:10.1158/0008-5472.CAN-07-6531.

    PubMed  CAS  Google Scholar 

  125. Osborne CK, Monaco ME, Lippman ME, Kahn CR. Correlation among insulin binding, degradation, and biological activity in human breast cancer cells in long-term tissue culture. Cancer Res. 1978;38(1):94–102.

    PubMed  CAS  Google Scholar 

  126. Pillemer G, Lugasi-Evgi H, Scharovsky G, Naor D. Insulin dependence of murine lymphoid T-cell leukemia. Int J Cancer. 1992;50(1):80–5. doi:10.1002/ijc.2910500117.

    PubMed  CAS  Google Scholar 

  127. Nandi S, Guzman RC, Yang J. Hormones and mammary carcinogenesis in mice, rats, and humans: a unifying hypothesis. Proc Natl Acad Sci U S A. 1995;92(9):3650–7. doi:10.1073/pnas.92.9.3650.

    PubMed  CAS  Google Scholar 

  128. Heuson JC, Legros N, Heimann R. Influence of insulin administration on growth of the 7,12-dimethylbenz(a)anthracene-induced mammary carcinoma in intact, oophorectomized, and hypophysectomized rats. Cancer Res. 1972;32(2):233–8.

    PubMed  CAS  Google Scholar 

  129. Sharon R, Pillemer G, Ish-Shalom D, Kalman R, Ziv E, Berry EM, et al. Insulin dependence of murine T-cell lymphoma. II. Insulin-deficient diabetic mice and mice fed low-energy diet develop resistance to lymphoma growth. Int J Cancer. 1993;53(5):843–9. doi:10.1002/ijc.2910530523.

    PubMed  CAS  Google Scholar 

  130. Milazzo G, Giorgino F, Damante G, Sung C, Stampfer MR, Vigneri R, et al. Insulin receptor expression and function in human breast cancer cell lines. Cancer Res. 1992;52(14):3924–30.

    PubMed  CAS  Google Scholar 

  131. Giorgino F, Belfiore A, Milazzo G, Costantino A, Maddux B, Whittaker J, et al. Overexpression of insulin receptors in fibroblast and ovary cells induces a ligand-mediated transformed phenotype. Mol Endocrinol. 1991;5(3):452–9.

    PubMed  CAS  Google Scholar 

  132. Mastick CC, Kato H, Roberts CT Jr, LeRoith D, Saltiel AR. Insulin and insulin-like growth factor-I receptors similarly stimulate deoxyribonucleic acid synthesis despite differences in cellular protein tyrosine phosphorylation. Endocrinology. 1994;135(1):214–22. doi:10.1210/en.135.1.214.

    PubMed  CAS  Google Scholar 

  133. Sciacca L, Mineo R, Pandini G, Murabito A, Vigneri R, Belfiore A. In IGF-I receptor-deficient leiomyosarcoma cells autocrine IGF-II induces cell invasion and protection from apoptosis via the insulin receptor isoform A. Oncogene. 2002;21(54):8240–50. doi:10.1038/sj.onc.1206058.

    PubMed  CAS  Google Scholar 

  134. Benoliel AM, Kahn-Perles B, Imbert J, Verrando P. Insulin stimulates haptotactic migration of human epidermal keratinocytes through activation of NF-kappa B transcription factor. J Cell Sci. 1997;110(Pt 17):2089–97.

    PubMed  CAS  Google Scholar 

  135. Ish-Shalom D, Christoffersen CT, Vorwerk P, Sacerdoti-Sierra N, Shymko RM, Naor D, et al. Mitogenic properties of insulin and insulin analogues mediated by the insulin receptor. Diabetologia. 1997;40(Suppl 2):S25–31. doi:10.1007/s001250051393.

    PubMed  CAS  Google Scholar 

  136. De Meyts P, Shymko RM. Timing-dependent modulation of insulin mitogenic versus metabolic signalling. Novartis Found Symp. 2000;227:46–57. doi:10.1002/0470870796.ch4 discussion 57–60.

    PubMed  Google Scholar 

  137. Drejer K. The bioactivity of insulin analogues from in vitro receptor binding to in vivo glucose uptake. Diabetes Metab Rev. 1992;8(3):259–85.

    PubMed  CAS  Google Scholar 

  138. Milazzo G, Sciacca L, Papa V, Goldfine ID, Vigneri R. ASPB10 insulin induction of increased mitogenic responses and phenotypic changes in human breast epithelial cells: evidence for enhanced interactions with the insulin-like growth factor-I receptor. Mol Carcinog. 1997;18(1):19–25. doi:10.1002/(SICI)1098-2744(199701)18:1<19::AID-MC3>3.0.CO;2-M.

    PubMed  CAS  Google Scholar 

  139. Hankins GR, De Souza AT, Bentley RC, Patel MR, Marks JR, Iglehart JD, et al. M6P/IGF2 receptor: a candidate breast tumor suppressor gene. Oncogene. 1996;12(9):2003–9.

    PubMed  CAS  Google Scholar 

  140. Yamada T, De Souza AT, Finkelstein S, Jirtle RL. Loss of the gene encoding mannose 6-phosphate/insulin-like growth factor II receptor is an early event in liver carcinogenesis. Proc Natl Acad Sci U S A. 1997;94(19):10351–5. doi:10.1073/pnas.94.19.10351.

    PubMed  CAS  Google Scholar 

  141. Oates AJ, Schumaker LM, Jenkins SB, Pearce AA, DaCosta SA, Arun B, et al. The mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R), a putative breast tumor suppressor gene. Breast Cancer Res Treat. 1998;47(3):269–81. doi:10.1023/A:1005959218524.

    PubMed  CAS  Google Scholar 

  142. Massague J. TGFbeta signaling: receptors, transducers, and Mad proteins. Cell. 1996;85(7):947–50. doi:10.1016/S0092-8674(00)81296-9.

    PubMed  CAS  Google Scholar 

  143. Wang S, Souza RF, Kong D, Yin J, Smolinski KN, Zou TT, et al. Deficient transforming growth factor-beta1 activation and excessive insulin-like growth factor II (IGFII) expression in IGFII receptor-mutant tumors. Cancer Res. 1997;57(13):2543–6.

    PubMed  CAS  Google Scholar 

  144. Vignon F, Rochefort H. Interactions of pro-cathepsin D and IGF-II on the mannose-6-phosphate/IGF-II receptor. Breast Cancer Res Treat. 1992;22(1):47–57. doi:10.1007/BF01833333.

    PubMed  CAS  Google Scholar 

  145. Mathieu M, Vignon F, Capony F, Rochefort H. Estradiol down-regulates the mannose-6-phosphate/insulin-like growth factor-II receptor gene and induces cathepsin-D in breast cancer cells: a receptor saturation mechanism to increase the secretion of lysosomal proenzymes. Mol Endocrinol. 1991;5(6):815–22.

    PubMed  CAS  Google Scholar 

  146. Seino S, Seino M, Nishi S, Bell GI. Structure of the human insulin receptor gene and characterization of its promoter. Proc Natl Acad Sci U S A. 1989;86(1):114–8. doi:10.1073/pnas.86.1.114.

    PubMed  CAS  Google Scholar 

  147. Yamaguchi Y, Flier JS, Benecke H, Ransil BJ, Moller DE. Ligand-binding properties of the two isoforms of the human insulin receptor. Endocrinology. 1993;132(3):1132–8. doi:10.1210/en.132.3.1132.

    PubMed  CAS  Google Scholar 

  148. Denley A, Bonython ER, Booker GW, Cosgrove LJ, Forbes BE, Ward CW, et al. Structural determinants for high-affinity binding of insulin-like growth factor II to insulin receptor (IR)-A, the exon 11 minus isoform of the IR. Mol Endocrinol. 2004;18(10):2502–12. doi:10.1210/me.2004-0183.

    PubMed  CAS  Google Scholar 

  149. Mosthaf L, Vogt B, Haring HU, Ullrich A. Altered expression of insulin receptor types A and B in the skeletal muscle of non-insulin-dependent diabetes mellitus patients. Proc Natl Acad Sci U S A. 1991;88(11):4728–30. doi:10.1073/pnas.88.11.4728.

    PubMed  CAS  Google Scholar 

  150. Louvi A, Accili D, Efstratiadis A. Growth-promoting interaction of IGF-II with the insulin receptor during mouse embryonic development. Dev Biol. 1997;189(1):33–48. doi:10.1006/dbio.1997.8666.

    PubMed  CAS  Google Scholar 

  151. Vogt B, Carrascosa JM, Ermel B, Ullrich A, Haring HU. The two isotypes of the human insulin receptor (HIR-A and HIR-B) follow different internalization kinetics. Biochem Biophys Res Commun. 1991;177(3):1013–8. doi:10.1016/0006-291X(91)90639-O.

    PubMed  CAS  Google Scholar 

  152. Kosaki A, Pillay TS, Xu L, Webster NJ. The B isoform of the insulin receptor signals more efficiently than the A isoform in HepG2 cells. J Biol Chem. 1995;270(35):20816–23. doi:10.1074/jbc.270.35.20816.

    PubMed  CAS  Google Scholar 

  153. Leibiger B, Leibiger IB, Moede T, Kemper S, Kulkarni RN, Kahn CR, et al. Selective insulin signaling through A and B insulin receptors regulates transcription of insulin and glucokinase genes in pancreatic beta cells. Mol Cell. 2001;7(3):559–70. doi:10.1016/S1097-2765(01)00203-9.

    PubMed  CAS  Google Scholar 

  154. Uhles S, Moede T, Leibiger B, Berggren PO, Leibiger IB. Isoform-specific insulin receptor signaling involves different plasma membrane domains. J Cell Biol. 2003;163(6):1327–37. doi:10.1083/jcb.200306093.

    PubMed  CAS  Google Scholar 

  155. Kosaki A, Webster NJ. Effect of dexamethasone on the alternative splicing of the insulin receptor mRNA and insulin action in HepG2 hepatoma cells. J Biol Chem. 1993;268(29):21990–6.

    PubMed  CAS  Google Scholar 

  156. Entingh AJ, Taniguchi CM, Kahn CR. Bi-directional regulation of brown fat adipogenesis by the insulin receptor. J Biol Chem. 2003;278(35):33377–83. doi:10.1074/jbc.M303056200.

    PubMed  CAS  Google Scholar 

  157. Sciacca L, Prisco M, Wu A, Belfiore A, Vigneri R, Baserga R. Signaling differences from the A and B isoforms of the insulin receptor (IR) in 32D cells in the presence or absence of IR substrate-1. Endocrinology. 2003;144(6):2650–8. doi:10.1210/en.2002-0136.

    PubMed  CAS  Google Scholar 

  158. Morrione A, Valentinis B, Xu SQ, Yumet G, Louvi A, Efstratiadis A, et al. Insulin-like growth factor II stimulates cell proliferation through the insulin receptor. Proc Natl Acad Sci U S A. 1997;94(8):3777–82. doi:10.1073/pnas.94.8.3777.

    PubMed  CAS  Google Scholar 

  159. Scalia P, Heart E, Comai L, Vigneri R, Sung CK. Regulation of the Akt/Glycogen synthase kinase-3 axis by insulin-like growth factor-II via activation of the human insulin receptor isoform-A. J Cell Biochem. 2001;82(4):610–8. doi:10.1002/jcb.1196.

    PubMed  CAS  Google Scholar 

  160. Pandini G, Medico E, Conte E, Sciacca L, Vigneri R, Belfiore A. Differential gene expression induced by insulin and insulin-like growth factor-II through the insulin receptor isoform A. J Biol Chem. 2003;278(43):42178–89. doi:10.1074/jbc.M304980200.

    PubMed  CAS  Google Scholar 

  161. Ullrich A, Bell JR, Chen EY, Herrera R, Petruzzelli LM, Dull TJ, et al. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature. 1985;313(6005):756–61. doi:10.1038/313756a0.

    PubMed  CAS  Google Scholar 

  162. Blanquart C, Achi J, Issad T. Characterization of IRA/IRB hybrid insulin receptors using bioluminescence resonance energy transfer. Biochem Pharmacol. 2008;76(7):873–83. doi:10.1016/j.bcp.2008.07.027.

    PubMed  CAS  Google Scholar 

  163. Soos MA, Whittaker J, Lammers R, Ullrich A, Siddle K. Receptors for insulin and insulin-like growth factor-I can form hybrid dimmers. Characterisation of hybrid receptors in transfected cells. Biochem J. 1990;270(2):383–90.

    PubMed  CAS  Google Scholar 

  164. Moxham CP, Jacobs S. Insulin/IGF-I receptor hybrids: a mechanism for increasing receptor diversity. J Cell Biochem. 1992;48(2):136–40. doi:10.1002/jcb.240480205.

    PubMed  CAS  Google Scholar 

  165. Bailyes EM, Nave BT, Soos MA, Orr SR, Hayward AC, Siddle K. Insulin receptor/IGF-I receptor hybrids are widely distributed in mammalian tissues: quantification of individual receptor species by selective immunoprecipitation and immunoblotting. Biochem J. 1997;327(Pt 1):209–15.

    PubMed  CAS  Google Scholar 

  166. Pandini G, Frasca F, Mineo R, Sciacca L, Vigneri R, Belfiore A. Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J Biol Chem. 2002;277(42):39684–95. doi:10.1074/jbc.M202766200.

    PubMed  CAS  Google Scholar 

  167. Soos MA, Field CE, Siddle K. Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity. Biochem J. 1993;290(Pt 2):419–26.

    PubMed  CAS  Google Scholar 

  168. Frattali AL, Treadway JL, Pessin JE. Insulin/IGF-1 hybrid receptors: implications for the dominant-negative phenotype in syndromes of insulin resistance. J Cell Biochem. 1992;48(1):43–50. doi:10.1002/jcb.240480108.

    PubMed  CAS  Google Scholar 

  169. Langlois WJ, Sasaoka T, Yip CC, Olefsky JM. Functional characterization of hybrid receptors composed of a truncated insulin receptor and wild type insulin-like growth factor 1 or insulin receptors. Endocrinology. 1995;136(5):1978–86. doi:10.1210/en.136.5.1978.

    PubMed  CAS  Google Scholar 

  170. Benyoucef S, Surinya KH, Hadaschik D, Siddle K. Characterization of insulin/IGF hybrid receptors: contributions of the insulin receptor L2 and Fn1 domains and the alternatively spliced exon 11 sequence to ligand binding and receptor activation. Biochem J. 2007;403(3):603–13. doi:10.1042/BJ20061709.

    PubMed  CAS  Google Scholar 

  171. Slaaby R, Schaffer L, Lautrup-Larsen I, Andersen AS, Shaw AC, Mathiasen IS, et al. Hybrid receptors formed by insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) have low insulin and high IGF-1 affinity irrespective of the IR splice variant. J Biol Chem. 2006;281(36):25869–74. doi:10.1074/jbc.M605189200.

    PubMed  CAS  Google Scholar 

  172. Garcia-de Lacoba M, Alarcon C, de la Rosa EJ, de Pablo F. Insulin/insulin-like growth factor-I hybrid receptors with high affinity for insulin are developmentally regulated during neurogenesis. Endocrinology. 1999;140(1):233–43. doi:10.1210/en.140.1.233.

    PubMed  CAS  Google Scholar 

  173. Tollefsen SE, Thompson K, Petersen DJ. Separation of the high affinity insulin-like growth factor I receptor from low affinity binding sites by affinity chromatography. J Biol Chem. 1987;262(34):16461–9.

    PubMed  CAS  Google Scholar 

  174. Jonas HA, Cox AJ. Insulin receptor sub-types in a human lymphoid-derived cell line (IM-9): differential regulation by insulin, dexamethasone and monensin. J Recept Res. 1991;11(5):813–29.

    PubMed  CAS  Google Scholar 

  175. Jonas HA, Eckardt GS, Clark S. Expression of atypical and classical insulin receptors in Chinese hamster ovary cells transfected with cloned cDNA for the human insulin receptor. Endocrinology. 1990;127(3):1301–9.

    PubMed  CAS  Google Scholar 

  176. Alexandrides TK, Smith RJ. A novel fetal insulin-like growth factor (IGF) I receptor. Mechanism for increased IGF I- and insulin-stimulated tyrosine kinase activity in fetal muscle. J Biol Chem. 1989;264(22):12922–30.

    PubMed  CAS  Google Scholar 

  177. Navarro M, Joulia D, Fedon Y, Levin J, Barenton B, Bernardi H. The atypical alpha2beta2 IGF receptor expressed in inducible c2.7 myoblasts is derived from post-translational modifications of the mouse IGF-I receptor. Growth Horm IGF Res. 2008;18(5):412–23. doi:10.1016/j.ghir.2008.03.001.

    PubMed  CAS  Google Scholar 

  178. Milazzo G, Yip CC, Maddux BA, Vigneri R, Goldfine ID. High-affinity insulin binding to an atypical insulin-like growth factor-I receptor in human breast cancer cells. J Clin Invest. 1992;89(3):899–908. doi:10.1172/JCI115670.

    PubMed  CAS  Google Scholar 

  179. Peyrat JP, Bonneterre J, Beuscart R, Djiane J, Demaille A. Insulin-like growth factor 1 receptors in human breast cancer and their relation to estradiol and progesterone receptors. Cancer Res. 1988;48(22):6429–33.

    PubMed  CAS  Google Scholar 

  180. Cullen KJ, Yee D, Sly WS, Perdue J, Hampton B, Lippman ME, et al. Insulin-like growth factor receptor expression and function in human breast cancer. Cancer Res. 1990;50(1):48–53.

    PubMed  CAS  Google Scholar 

  181. Papa V, Gliozzo B, Clark GM, McGuire WL, Moore D, Fujita-Yamaguchi Y, et al. Insulin-like growth factor-I receptors are overexpressed and predict a low risk in human breast cancer. Cancer Res. 1993;53(16):3736–40.

    PubMed  CAS  Google Scholar 

  182. Resnik JL, Reichart DB, Huey K, Webster NJ, Seely BL. Elevated insulin-like growth factor I receptor autophosphorylation and kinase activity in human breast cancer. Cancer Res. 1998;58(6):1159–64.

    PubMed  CAS  Google Scholar 

  183. Koda M, Sulkowski S, Garofalo C, Kanczuga-Koda L, Sulkowska M, Surmacz E. Expression of the insulin-like growth factor-I receptor in primary breast cancer and lymph node metastases: correlations with estrogen receptors alpha and beta. Horm Metab Res. 2003;35(11–12):794–801.

    PubMed  CAS  Google Scholar 

  184. Soos MA, Nave BT, Siddle K. Immunological studies of type I IGF receptors and insulin receptors: characterisation of hybrid and atypical receptor subtypes. Adv Exp Med Biol. 1993;343:145–57.

    PubMed  CAS  Google Scholar 

  185. Bonneterre J, Peyrat JP, Beuscart R, Demaille A. Prognostic significance of insulin-like growth factor 1 receptors in human breast cancer. Cancer Res. 1990;50(21):6931–5.

    PubMed  CAS  Google Scholar 

  186. Foekens JA, Portengen H, van Putten WL, Trapman AM, Reubi JC, Alexieva-Figusch J, et al. Prognostic value of receptors for insulin-like growth factor 1, somatostatin, and epidermal growth factor in human breast cancer. Cancer Res. 1989;49(24 Pt 1):7002–9.

    PubMed  CAS  Google Scholar 

  187. Berns EM, Klijn JG, van Staveren IL, Portengen H, Foekens JA. Sporadic amplification of the insulin-like growth factor 1 receptor gene in human breast tumors. Cancer Res. 1992;52(4):1036–9.

    PubMed  CAS  Google Scholar 

  188. Railo MJ, von Smitten K, Pekonen F. The prognostic value of insulin-like growth factor-I in breast cancer patients. Results of a follow-up study on 126 patients. Eur J Cancer. 1994;30A(3):307–11. doi:10.1016/0959-8049(94)90247-X.

    PubMed  CAS  Google Scholar 

  189. Turner BC, Haffty BG, Narayanan L, Yuan J, Havre PA, Gumbs AA, et al. Insulin-like growth factor-I receptor overexpression mediates cellular radioresistance and local breast cancer recurrence after lumpectomy and radiation. Cancer Res. 1997;57(15):3079–83.

    PubMed  CAS  Google Scholar 

  190. Yu D, Watanabe H, Shibuya H, Miura M. Redundancy of radioresistant signaling pathways originating from insulin-like growth factor I receptor. J Biol Chem. 2003;278(9):6702–9. doi:10.1074/jbc.M209809200.

    PubMed  CAS  Google Scholar 

  191. Novosyadlyy R, Kurshan N, Lann D, Vijayakumar A, Yakar S, LeRoith D. Insulin-like growth factor-I protects cells from ER stress-induced apoptosis via enhancement of the adaptive capacity of endoplasmic reticulum. Cell Death Differ. 2008;15(8):1304–17. doi:10.1038/cdd.2008.52.

    PubMed  CAS  Google Scholar 

  192. Zhang X, Lin M, van Golen KL, Yoshioka K, Itoh K, Yee D. Multiple signaling pathways are activated during insulin-like growth factor-I (IGF-I) stimulated breast cancer cell migration. Breast Cancer Res Treat. 2005;93(2):159–68. doi:10.1007/s10549-005-4626-8.

    PubMed  CAS  Google Scholar 

  193. Lynch L, Vodyanik PI, Boettiger D, Guvakova MA. Insulin-like growth factor I controls adhesion strength mediated by alpha5beta1 integrins in motile carcinoma cells. Mol Biol Cell. 2005;16(1):51–63. doi:10.1091/mbc.E04-05-0399.

    PubMed  CAS  Google Scholar 

  194. Akekawatchai C, Holland JD, Kochetkova M, Wallace JC, McColl SR. Transactivation of CXCR4 by the insulin-like growth factor-1 receptor (IGF-1R) in human MDA-MB-231 breast cancer epithelial cells. J Biol Chem. 2005;280(48):39701–8. doi:10.1074/jbc.M509829200.

    PubMed  CAS  Google Scholar 

  195. Maor S, Yosepovich A, Papa MZ, Yarden RI, Mayer D, Friedman E, et al. Elevated insulin-like growth factor-I receptor (IGF-IR) levels in primary breast tumors associated with BRCA1 mutations. Cancer Lett. 2007;257(2):236–43. doi:10.1016/j.canlet.2007.07.019.

    PubMed  CAS  Google Scholar 

  196. Hudelist G, Wagner T, Rosner M, Fink-Retter A, Gschwantler-Kaulich D, Czerwenka K, et al. Intratumoral IGF-I protein expression is selectively upregulated in breast cancer patients with BRCA1/2 mutations. Endocr Relat Cancer. 2007;14(4):1053–62. doi:10.1677/ERC-06-0075.

    PubMed  CAS  Google Scholar 

  197. Ohlsson C, Kley N, Werner H, LeRoith D. p53 regulates insulin-like growth factor-I (IGF-I) receptor expression and IGF-I-induced tyrosine phosphorylation in an osteosarcoma cell line: interaction between p53 and Sp1. Endocrinology. 1998;139(3):1101–7. doi:10.1210/en.139.3.1101.

    PubMed  CAS  Google Scholar 

  198. Papa V, Pezzino V, Costantino A, Belfiore A, Giuffrida D, Frittitta L, et al. Elevated insulin receptor content in human breast cancer. J Clin Invest. 1990;86(5):1503–10. doi:10.1172/JCI114868.

    PubMed  CAS  Google Scholar 

  199. Sciacca L, Costantino A, Pandini G, Mineo R, Frasca F, Scalia P, et al. Insulin receptor activation by IGF-II in breast cancers: evidence for a new autocrine/paracrine mechanism. Oncogene. 1999;18(15):2471–9. doi:10.1038/sj.onc.1202600.

    PubMed  CAS  Google Scholar 

  200. Pandini G, Vigneri R, Costantino A, Frasca F, Ippolito A, Fujita-Yamaguchi Y, et al. Insulin and insulin-like growth factor-I (IGF-I) receptor overexpression in breast cancers leads to insulin/IGF-I hybrid receptor overexpression: evidence for a second mechanism of IGF-I signaling. Clin Cancer Res. 1999;5(7):1935–44.

    PubMed  CAS  Google Scholar 

  201. Cohen ND, Hilf R. Influence of insulin on growth and metabolism of 7,12-dimethylbenz(alpha)anthracene-induced mammary tumors. Cancer Res. 1974;34(12):3245–52.

    PubMed  CAS  Google Scholar 

  202. Papa V, Belfiore A. Insulin receptors in breast cancer: biological and clinical role. J Endocrinol Invest. 1996;19(5):324–33.

    PubMed  CAS  Google Scholar 

  203. Papa V, Milazzo G, Goldfine ID, Waldman FM, Vigneri R. Sporadic amplification of the insulin receptor gene in human breast cancer. J Endocrinol Invest. 1997;20(9):531–6.

    PubMed  CAS  Google Scholar 

  204. Frittitta L, Cerrato A, Sacco MG, Weidner N, Goldfine ID, Vigneri R. The insulin receptor content is increased in breast cancers initiated by three different oncogenes in transgenic mice. Breast Cancer Res Treat. 1997;45(2):141–7. doi:10.1023/A:1005801713713.

    PubMed  CAS  Google Scholar 

  205. Webster NJ, Resnik JL, Reichart DB, Strauss B, Haas M, Seely BL. Repression of the insulin receptor promoter by the tumor suppressor gene product p53: a possible mechanism for receptor overexpression in breast cancer. Cancer Res. 1996;56(12):2781–8.

    PubMed  CAS  Google Scholar 

  206. Paonessa F, Foti D, Costa V, Chiefari E, Brunetti G, Leone F, et al. Activator protein-2 overexpression accounts for increased insulin receptor expression in human breast cancer. Cancer Res. 2006;66(10):5085–93. doi:10.1158/0008-5472.CAN-05-3678.

    PubMed  CAS  Google Scholar 

  207. Mathieu MC, Clark GM, Allred DC, Goldfine ID, Vigneri R. Insulin receptor expression and clinical outcome in node-negative breast cancer. Proc Assoc Am Physicians. 1997;109(6):565–71.

    PubMed  CAS  Google Scholar 

  208. Mulligan AM, O’Malley FP, Ennis M, Fantus IG, Goodwin PJ. Insulin receptor is an independent predictor of a favorable outcome in early stage breast cancer. Breast Cancer Res Treat. 2007;106(1):39–47. doi:10.1007/s10549-006-9471-x.

    PubMed  CAS  Google Scholar 

  209. Pandini G, Wurch T, Akla B, Corvaia N, Belfiore A, Goetsch L. Functional responses and in vivo anti-tumour activity of h7C10: a humanised monoclonal antibody with neutralising activity against the insulin-like growth factor-1 (IGF-1) receptor and insulin/IGF-1 hybrid receptors. Eur J Cancer. 2007;43(8):1318–27. doi:10.1016/j.ejca.2007.03.009.

    PubMed  CAS  Google Scholar 

  210. Cullen KJ, Allison A, Martire I, Ellis M, Singer C. Insulin-like growth factor expression in breast cancer epithelium and stroma. Breast Cancer Res Treat. 1992;22(1):21–9. doi:10.1007/BF01833330.

    PubMed  CAS  Google Scholar 

  211. Arteaga CL, Osborne CK. Growth inhibition of human breast cancer cells in vitro with an antibody against the type I somatomedin receptor. Cancer Res. 1989;49(22):6237–41.

    PubMed  CAS  Google Scholar 

  212. Sara VR, Hall K. Insulin-like growth factors and their binding proteins. Physiol Rev. 1990;70(3):591–614.

    PubMed  CAS  Google Scholar 

  213. Rasmussen AA, Cullen KJ. Paracrine/autocrine regulation of breast cancer by the insulin-like growth factors. Breast Cancer Res Treat. 1998;47(3):219–33. doi:10.1023/A:1005903000777.

    PubMed  CAS  Google Scholar 

  214. Mathews LS, Hammer RE, Behringer RR, D’Ercole AJ, Bell GI, Brinster RL, et al. Growth enhancement of transgenic mice expressing human insulin-like growth factor I. Endocrinology. 1988;123(6):2827–33.

    Article  PubMed  CAS  Google Scholar 

  215. Hadsell DL, Greenberg NM, Fligger JM, Baumrucker CR, Rosen JM. Targeted expression of des(1–3) human insulin-like growth factor I in transgenic mice influences mammary gland development and IGF-binding protein expression. Endocrinology. 1996;137(1):321–30. doi:10.1210/en.137.1.321.

    PubMed  CAS  Google Scholar 

  216. Neuenschwander S, Schwartz A, Wood TL, Roberts CT Jr, Hennighausen L, LeRoith D. Involution of the lactating mammary gland is inhibited by the IGF system in a transgenic mouse model. J Clin Invest. 1996;97(10):2225–32. doi:10.1172/JCI118663.

    PubMed  CAS  Google Scholar 

  217. Pollak M, Blouin MJ, Zhang JC, Kopchick JJ. Reduced mammary gland carcinogenesis in transgenic mice expressing a growth hormone antagonist. Br J Cancer. 2001;85(3):428–30. doi:10.1054/bjoc.2001.1895.

    PubMed  CAS  Google Scholar 

  218. Sussenbach JS, Rodenburg RJ, Scheper W, Holthuizen P. Transcriptional and post-transcriptional regulation of the human IGF-II gene expression. Adv Exp Med Biol. 1993;343:63–71.

    PubMed  CAS  Google Scholar 

  219. Zhang L, Kashanchi F, Zhan Q, Zhan S, Brady JN, Fornace AJ, et al. Regulation of insulin-like growth factor II P3 promoter by p53: a potential mechanism for tumorigenesis. Cancer Res. 1996;56(6):1367–73.

    PubMed  CAS  Google Scholar 

  220. Cullen KJ, Smith HS, Hill S, Rosen N, Lippman ME. Growth factor messenger RNA expression by human breast fibroblasts from benign and malignant lesions. Cancer Res. 1991;51(18):4978–85.

    PubMed  CAS  Google Scholar 

  221. Ellis MJ, Jenkins S, Hanfelt J, Redington ME, Taylor M, Leek R, et al. Insulin-like growth factors in human breast cancer. Breast Cancer Res Treat. 1998;52(1–3):175–84. doi:10.1023/A:1006127621512.

    PubMed  CAS  Google Scholar 

  222. Ellis MJ, Singer C, Hornby A, Rasmussen A, Cullen KJ. Insulin-like growth factor mediated stromal–epithelial interactions in human breast cancer. Breast Cancer Res Treat. 1994;31(2–3):249–61. doi:10.1007/BF00666158.

    PubMed  CAS  Google Scholar 

  223. Manni A, Badger B, Wei L, Zaenglein A, Grove R, Khin S, et al. Hormonal regulation of insulin-like growth factor II and insulin-like growth factor binding protein expression by breast cancer cells in vivo: evidence for stromal epithelial interactions. Cancer Res. 1994;54(11):2934–42.

    PubMed  CAS  Google Scholar 

  224. Yee D, Lee AV. Crosstalk between the insulin-like growth factors and estrogens in breast cancer. J Mammary Gland Biol Neoplasia. 2000;5(1):107–15. doi:10.1023/A:1009575518338.

    PubMed  CAS  Google Scholar 

  225. Qiu Q, Basak A, Mbikay M, Tsang BK, Gruslin A. Role of pro-IGF-II processing by proprotein convertase 4 in human placental development. Proc Natl Acad Sci U S A. 2005;102(31):11047–52. doi:10.1073/pnas.0502357102.

    PubMed  CAS  Google Scholar 

  226. Korn E, Van Hoff J, Buckley P, Daughaday WH, Carpenter TO. Secretion of a large molecular-weight form of insulin-like growth factor by a primary renal tumor. Med Pediatr Oncol. 1995;24(6):392–6. doi:10.1002/mpo.2950240610.

    PubMed  CAS  Google Scholar 

  227. Singh SK, Moretta D, Almaguel F, De Leon M, De Leon DD. Precursor IGF-II (proIGF-II) and mature IGF-II (mIGF-II) induce Bcl-2 And Bcl-X L expression through different signaling pathways in breast cancer cells. Growth Factors. 2008;26(2):92–103. doi:10.1080/08977190802057258.

    PubMed  CAS  Google Scholar 

  228. Wu HK, Squire JA, Catzavelos CG, Weksberg R. Relaxation of imprinting of human insulin-like growth factor II gene, IGF2, in sporadic breast carcinomas. Biochem Biophys Res Commun. 1997;235(1):123–9. doi:10.1006/bbrc.1997.6744.

    PubMed  CAS  Google Scholar 

  229. van Roozendaal CE, Gillis AJ, Klijn JG, van Ooijen B, Claassen CJ, Eggermont AM, et al. Loss of imprinting of IGF2 and not H19 in breast cancer, adjacent normal tissue and derived fibroblast cultures. FEBS Lett. 1998;437(1–2):107–11. doi:10.1016/S0014-5793(98)01211-3.

    PubMed  Google Scholar 

  230. Yballe CM, Vu TH, Hoffman AR. Imprinting and expression of insulin-like growth factor-II and H19 in normal breast tissue and breast tumor. J Clin Endocrinol Metab. 1996;81(4):1607–12. doi:10.1210/jc.81.4.1607.

    PubMed  CAS  Google Scholar 

  231. Ito Y, Koessler T, Ibrahim AE, Rai S, Vowler SL, Abu-Amero S, et al. Somatically acquired hypomethylation of IGF2 in breast and colorectal cancer. Hum Mol Genet. 2008;17(17):2633–43. doi:10.1093/hmg/ddn163.

    PubMed  CAS  Google Scholar 

  232. Pacher M, Seewald MJ, Mikula M, Oehler S, Mogg M, Vinatzer U, et al. Impact of constitutive IGF1/IGF2 stimulation on the transcriptional program of human breast cancer cells. Carcinogenesis. 2007;28(1):49–59. doi:10.1093/carcin/bgl091.

    PubMed  CAS  Google Scholar 

  233. Bendall SC, Stewart MH, Menendez P, George D, Vijayaragavan K, Werbowetski-Ogilvie T, et al. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature. 2007;448(7157):1015–21. doi:10.1038/nature06027.

    PubMed  CAS  Google Scholar 

  234. Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea—a paradigm shift. Cancer Res. 2006;66(4):1883–90. doi:10.1158/0008-5472.CAN-05-3153 discussion 1895–6.

    PubMed  CAS  Google Scholar 

  235. Berthe ML, Esslimani Sahla M, Roger P, Gleizes M, Lemamy GJ, Brouillet JP, et al. Mannose-6-phosphate/insulin-like growth factor-II receptor expression levels during the progression from normal human mammary tissue to invasive breast carcinomas. Eur J Cancer. 2003;39(5):635–42. doi:10.1016/S0959-8049(02)00627-5.

    PubMed  CAS  Google Scholar 

  236. Chen Z, Ge Y, Landman N, Kang JX. Decreased expression of the mannose 6-phosphate/insulin-like growth factor-II receptor promotes growth of human breast cancer cells. BMC Cancer. 2002;2:18. doi:10.1186/1471-2407-2-18.

    PubMed  Google Scholar 

  237. Lee JS, Weiss J, Martin JL, Scott CD. Increased expression of the mannose 6-phosphate/insulin-like growth factor-II receptor in breast cancer cells alters tumorigenic properties in vitro and in vivo. Int J Cancer. 2003;107(4):564–70. doi:10.1002/ijc.11453.

    PubMed  CAS  Google Scholar 

  238. Wise TL, Pravtcheva DD. Delayed onset of Igf2-induced mammary tumors in Igf2r transgenic mice. Cancer Res. 2006;66(3):1327–36. doi:10.1158/0008-5472.CAN-05-3107.

    PubMed  CAS  Google Scholar 

  239. Xie S, Kang JX. Differential expression of the mannose 6-phosphate/ insulin-like growth factor-II receptor in human breast cancer cell lines of different invasive potential. Med Sci Monit. 2002;8(8):BR293–300.

    PubMed  CAS  Google Scholar 

  240. Casa AJ, Dearth RK, Litzenburger BC, Lee AV, Cui X. The type I insulin-like growth factor receptor pathway: a key player in cancer therapeutic resistance. Front Biosci. 2008;13:3273–87. doi:10.2741/2925.

    PubMed  CAS  Google Scholar 

  241. Gupta AK, Bakanauskas VJ, Cerniglia GJ, Cheng Y, Bernhard EJ, Muschel RJ, et al. The Ras radiation resistance pathway. Cancer Res. 2001;61(10):4278–82.

    PubMed  CAS  Google Scholar 

  242. Shahrabani-Gargir L, Pandita TK, Werner H. Ataxia-telangiectasia mutated gene controls insulin-like growth factor I receptor gene expression in a deoxyribonucleic acid damage response pathway via mechanisms involving zinc-finger transcription factors Sp1 and WT1. Endocrinology. 2004;145(12):5679–87. doi:10.1210/en.2004-0613.

    PubMed  CAS  Google Scholar 

  243. Peretz S, Jensen R, Baserga R, Glazer PM. ATM-dependent expression of the insulin-like growth factor-I receptor in a pathway regulating radiation response. Proc Natl Acad Sci U S A. 2001;98(4):1676–81. doi:10.1073/pnas.041416598.

    PubMed  CAS  Google Scholar 

  244. Beech DJ, Parekh N, Pang Y. Insulin-like growth factor-I receptor antagonism results in increased cytotoxicity of breast cancer cells to doxorubicin and taxol. Oncol Rep. 2001;8(2):325–9.

    PubMed  CAS  Google Scholar 

  245. Dunn SE, Hardman RA, Kari FW, Barrett JC. Insulin-like growth factor 1 (IGF-1) alters drug sensitivity of HBL100 human breast cancer cells by inhibition of apoptosis induced by diverse anticancer drugs. Cancer Res. 1997;57(13):2687–93.

    PubMed  CAS  Google Scholar 

  246. Parisot JP, Hu XF, DeLuise M, Zalcberg JR. Altered expression of the IGF-1 receptor in a tamoxifen-resistant human breast cancer cell line. Br J Cancer. 1999;79(5–6):693–700. doi:10.1038/sj.bjc.6690112.

    PubMed  CAS  Google Scholar 

  247. Nicholson RI, Gee JM. Oestrogen and growth factor cross-talk and endocrine insensitivity and acquired resistance in breast cancer. Br J Cancer. 2000;82(3):501–13. doi:10.1054/bjoc.1999.0954.

    PubMed  CAS  Google Scholar 

  248. Nicholson RI, Staka C, Boyns F, Hutcheson IR, Gee JM. Growth factor-driven mechanisms associated with resistance to estrogen deprivation in breast cancer: new opportunities for therapy. Endocr Relat Cancer. 2004;11(4):623–41. doi:10.1677/erc.1.00778.

    PubMed  CAS  Google Scholar 

  249. Knowlden JM, Hutcheson IR, Barrow D, Gee JM, Nicholson RI. Insulin-like growth factor-I receptor signaling in tamoxifen-resistant breast cancer: a supporting role to the epidermal growth factor receptor. Endocrinology. 2005;146(11):4609–18. doi:10.1210/en.2005-0247.

    PubMed  CAS  Google Scholar 

  250. Sisci D, Surmacz E. Crosstalk between IGF signaling and steroid hormone receptors in breast cancer. Curr Pharm Des. 2007;13(7):705–17. doi:10.2174/138161207780249182.

    PubMed  CAS  Google Scholar 

  251. Maor S, Mayer D, Yarden RI, Lee AV, Sarfstein R, Werner H, et al. Estrogen receptor regulates insulin-like growth factor-I receptor gene expression in breast tumor cells: involvement of transcription factor Sp1. J Endocrinol. 2006;191(3):605–12. doi:10.1677/joe.1.07016.

    PubMed  CAS  Google Scholar 

  252. Pandini G, Genua M, Frasca F, Squatrito S, Vigneri R, Belfiore A. 17beta-estradiol up-regulates the insulin-like growth factor receptor through a nongenotropic pathway in prostate cancer cells. Cancer Res. 2007;67(18):8932–41. doi:10.1158/0008-5472.CAN-06-4814.

    PubMed  CAS  Google Scholar 

  253. Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A. 1992;89(10):4285–9. doi:10.1073/pnas.89.10.4285.

    PubMed  CAS  Google Scholar 

  254. Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst. 2001;93(24):1852–7. doi:10.1093/jnci/93.24.1852.

    PubMed  CAS  Google Scholar 

  255. Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ. Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res. 2005;65(23):11118–28. doi:10.1158/0008-5472.CAN-04-3841.

    PubMed  CAS  Google Scholar 

  256. Jones HE, Gee JM, Barrow D, Tonge D, Holloway B, Nicholson RI. Inhibition of insulin receptor isoform-A signalling restores sensitivity to gefitinib in previously de novo resistant colon cancer cells. Br J Cancer. 2006;95(2):172–80. doi:10.1038/sj.bjc.6603237.

    PubMed  CAS  Google Scholar 

  257. Baserga R, Sell C, Porcu P, Rubini M. The role of the IGF-I receptor in the growth and transformation of mammalian cells. Cell Prolif. 1994;27(2):63–71. doi:10.1111/j.1365-2184.1994.tb01406.x.

    PubMed  CAS  Google Scholar 

  258. Hofmann F, Garcia-Echeverria C. Blocking the insulin-like growth factor-I receptor as a strategy for targeting cancer. Drug Discov Today. 2005;10(15):1041–7. doi:10.1016/S1359-6446(05)03512-9.

    PubMed  CAS  Google Scholar 

  259. Mur C, Valverde AM, Kahn CR, Benito M. Increased insulin sensitivity in IGF-I receptor-deficient brown adipocytes. Diabetes. 2002;51(3):743–54. doi:10.2337/diabetes.51.3.743.

    PubMed  CAS  Google Scholar 

  260. Zhang H, Pelzer AM, Kiang DT, Yee D. Down-regulation of type I insulin-like growth factor receptor increases sensitivity of breast cancer cells to insulin. Cancer Res. 2007;67(1):391–7. doi:10.1158/0008-5472.CAN-06-1712.

    PubMed  CAS  Google Scholar 

  261. Fulzele K, DiGirolamo DJ, Liu Z, Xu J, Messina JL, Clemens TL. Disruption of the insulin-like growth factor type 1 receptor in osteoblasts enhances insulin signaling and action. J Biol Chem. 2007;282(35):25649–58. doi:10.1074/jbc.M700651200.

    PubMed  CAS  Google Scholar 

  262. Sachdev D, Singh R, Fujita-Yamaguchi Y, Yee D. Down-regulation of insulin receptor by antibodies against the type I insulin-like growth factor receptor: implications for anti-insulin-like growth factor therapy in breast cancer. Cancer Res. 2006;66(4):2391–402. doi:10.1158/0008-5472.CAN-05-3126.

    PubMed  CAS  Google Scholar 

  263. Miyamoto S, Nakamura M, Shitara K, Nakamura K, Ohki Y, Ishii G, et al. Blockade of paracrine supply of insulin-like growth factors using neutralizing antibodies suppresses the liver metastasis of human colorectal cancers. Clin Cancer Res. 2005;11(9):3494–502. doi:10.1158/1078-0432.CCR-04-1701.

    PubMed  CAS  Google Scholar 

  264. Goya M, Miyamoto S, Nagai K, Ohki Y, Nakamura K, Shitara K, et al. Growth inhibition of human prostate cancer cells in human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice by a ligand-specific antibody to human insulin-like growth factors. Cancer Res. 2004;64(17):6252–8. doi:10.1158/0008-5472.CAN-04-0919.

    PubMed  CAS  Google Scholar 

  265. Feng Y, Zhu Z, Xiao X, Choudhry V, Barrett JC, Dimitrov DS. Novel human monoclonal antibodies to insulin-like growth factor (IGF)-II that potently inhibit the IGF receptor type I signal transduction function. Mol Cancer Ther. 2006;5(1):114–20. doi:10.1158/1535-7163.MCT-05-0252.

    PubMed  CAS  Google Scholar 

  266. Haluska P, Carboni JM, Loegering DA, Lee FY, Wittman M, Saulnier MG, et al. In vitro and in vivo antitumor effects of the dual insulin-like growth factor-I/insulin receptor inhibitor, BMS-554417. Cancer Res. 2006;66(1):362–71. doi:10.1158/0008-5472.CAN-05-1107.

    PubMed  CAS  Google Scholar 

  267. Girnita A, Girnita L, del Prete F, Bartolazzi A, Larsson O, Axelson M. Cyclolignans as inhibitors of the insulin-like growth factor-1 receptor and malignant cell growth. Cancer Res. 2004;64(1):236–42. doi:10.1158/0008-5472.CAN-03-2522.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Riccardo Vigneri (University of Catania, Italy) for his constant support and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Belfiore.

Additional information

Grant support: This work was partially supported by grants from the AIRC (Associazione Italiana per la Ricerca sul Cancro) and PRIN-MIUR 2005 (Ministero Italiano Università e Ricerca) to A.B.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belfiore, A., Frasca, F. IGF and Insulin Receptor Signaling in Breast Cancer. J Mammary Gland Biol Neoplasia 13, 381–406 (2008). https://doi.org/10.1007/s10911-008-9099-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-008-9099-z

Keywords

Navigation