Skip to main content
Log in

Analysis of the Impact of Nonlinear Heat Transfer Laws on Temperature Distribution in Irradiated Biological Tissues: Mathematical Models and Optimal Controls

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, we consider nonlinear control problems governed by some generalized transient bioheat transfer-type models with the nonlinear Robin boundary conditions. The control estimates the blood perfusion rate, the heat transfer parameter, the distributed energy source terms, and the heat flux due to the evaporation, which affect the effects of thermal physical properties on the transient temperature of biological tissues. The result can be very beneficial for thermal diagnostics in medical practices, for example, for laser surgery, photo and thermotherapy for regional hyperthermia often used in treatment of cancer. First, the mathematical models are introduced and the existence, uniqueness, and regularity of a solution of the state equation are proved as well as the stability and maximum principle under extra assumptions. Afterwards, the optimal control problem is formulated in order to control the online temperature given by radiometric measurement. We prove that an optimal solution exists and obtain necessary optimality conditions. Some strategy for numerical realization based on the adjoint variables are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. A. Adams, Sobolev spaces. Academic Press, New York (1975).

    MATH  Google Scholar 

  2. H. Arkin et al., Thermal pulse decay method for simultaneous measurement of local thermal conductivity and blood perfusion: A theoritical snalysis. J. Biomech. Eng. 108 (1986) 208–214.

    Google Scholar 

  3. A. Belmiloudi, On some control problems for heat transfer systems in perfused biological tissues. Wseas Transl. System 5 (2006), 17–25.

    MathSciNet  MATH  Google Scholar 

  4. C. K. Charney, Mathematical models of bioheat transfer. Adv. Heat Trans. 22 (1992), 19–155.

    Article  Google Scholar 

  5. J. C. Chato, Heat transfer to blood vessels. J. Biomech. Eng. 102 (1980), 110–118.

    Google Scholar 

  6. M. M. Chen and K. R. Holmes, Microvascular contributions in tissue heat transfer. Ann. N.Y. Acad. Sci. 335 (1980), 137–150.

    Article  Google Scholar 

  7. _____, In vivo tissue thermal conductivity and local blood perfusion measured with heat pulse-decay method. Adv. Bioeng. (1980), 113–115.

  8. P. G. Ciarlet, The finite element method for elliptic problems. North-Holland (1978).

  9. _____, Introduction to numerical linear algebra and optimization. Cambridge (1989).

  10. M. C. Delfour, C. Payre, and J. P. Zelesio, Approximation of nonlinear problems associated with radiating bodies in space. SIAM J. Numer. Anal. 24 (1987), 1077–1094.

    Article  MATH  MathSciNet  Google Scholar 

  11. Y. H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10 (1999), 177–182.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Deuflhard and M. Seebass, Adaptive multilevel FEM as decisive tools in clinical cancer therapy hyperthermia. Konrad–Zuse–Zentrum für Informationstechn., Berlin Takustr. 7, D-14195 Berlin (1998).

  13. H. Gajewski, K. Groger, and K. Zacharias, Nichtlinear Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin (1974).

    Google Scholar 

  14. T. Ganzler, S. Volkwein, and M. Weiser, SQP methods for parameter identification problem arising in hyperthermia. Optim. Meth. Soft. (to appear).

  15. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag, Berlin (1983).

    MATH  Google Scholar 

  16. P. E. Gill, W. Murray, and M. H. Wright, Pratical optimization. Academic Press, San Diego (1981).

    Google Scholar 

  17. M. R. Hestenes, Conjugate direction methods in optimization. Springer-Verlag, New York (1980).

    MATH  Google Scholar 

  18. J. Hill and A. Pincombe, Some similarity temperature profiles for the microwave heating of a half-space. J. Austr. Math. Soc. Ser. B 33, (1992), 290–320.

    MATH  MathSciNet  Google Scholar 

  19. M. Laitinen and T. Tiihonen, Conductive-radiative heat transfer in grey materials. Q. Appl. Math. 59 (2001), 737–768.

    MATH  MathSciNet  Google Scholar 

  20. J. L. Lions, Equations differentielles operationnelles. Springer-Verlag, New York (1961).

    MATH  Google Scholar 

  21. _____, Quelques méthodes de résolution des problèmes aux limites nonlinéaires. Dunod, Paris (1969).

    Google Scholar 

  22. J. L. Lions, and E. Magenes, Problèmes aux limites non homogènes et applications. Dunod, Paris (1968).

    MATH  Google Scholar 

  23. T. Marchant and B. Lui, On the heating of a two-dimensional slab in a microwave cavity: aprature effects. ANZIAM J. 43 (2001), 137–148.

    MATH  Google Scholar 

  24. C. Meyer, P. Philip and F. Troltzsch, Optimal control of semilinear PDE with nonlocal radiation interface conditions. IMA Preprint ser. No. 2002 (2004).

  25. A. H. Pincombe and N. F. Smyth, Microwave heating of materials with low conductivity. Proc. Roy. Soc. A 433 (1991), 479–498.

    Article  MATH  MathSciNet  Google Scholar 

  26. H. H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Phys. 1 (1948), 93–122; 85 (1998), 5–34.

    Google Scholar 

  27. C. Sturesson and S. Andersson-Engels, A mathematical model for predicting the temperature distribution in laser-induced hyperthermia. Experimental evaluation and applications. Phys. Med. Biol. 40 (1995), 2037–2052.

    Article  Google Scholar 

  28. J. W. Valvano et al., An isolated rat liver model for the evaluation of thermal techniques to measure perfusion. J. Biomech. Eng. 106 (1984), 187–191.

    Article  Google Scholar 

  29. S. Weinbaum and L. M. Jiji, A two simplified bioheat equation for the effect of blood flow on average tissue temperature. J. Biomech. Eng. 107 (1985), 131–139.

    Article  Google Scholar 

  30. E. H. Wissler, Pennes’ 1948 paper revisited. J. Appl. Phys. 85 (1998), 35–41.

    Google Scholar 

  31. M. Yamamoto and J. Zou, Simultaneous reconstruction of the initial temperature and heat radiative coefficient. Inv. Probl. 17 (2001), 1181–1202.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Belmiloudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belmiloudi, A. Analysis of the Impact of Nonlinear Heat Transfer Laws on Temperature Distribution in Irradiated Biological Tissues: Mathematical Models and Optimal Controls. J Dyn Control Syst 13, 217–254 (2007). https://doi.org/10.1007/s10883-007-9011-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-007-9011-y

2000 Mathematics Subject Classification

Key words and phrases

Navigation