Skip to main content
Log in

Effect of pyrophosphate ions on the conversion of calcium–lithium–borate glass to hydroxyapatite in aqueous phosphate solution

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The conversion of glass to a hydroxyapatite (HA) material in an aqueous phosphate solution is used as an indication of the bioactive potential of the glass, as well as a low temperature route for preparing biologically useful materials. In this work, the effect of varying concentrations of pyrophosphate ions in the phosphate solution on the conversion of a calcium–lithium–borate glass to HA was investigated. Particles of the glass (150–355 μm) were immersed for up to 28 days in 0.25 M K2HPO4 solution containing 0–0.1 M K4P2O7. The kinetics of degradation of the glass particles and their conversion to HA were monitored by measuring the weight loss of the particles and the ionic concentration of the solution. The structure and composition of the conversion products were analyzed using X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. For K4P2O7 concentrations of up to 0.01 M, the glass particles converted to HA, but the time for complete conversion increased from 2 days (no K4P2O7) to 10 days (0.01 M K4P2O7). When the K4P2O7 concentration was increased to 0.1 M, the product consisted of an amorphous calcium phosphate material, which eventually crystallized to a pyrophosphate product (predominantly K2CaP2O7 and Ca2P2O7). The consequences of the results for the formation of HA materials and devices by the glass conversion route are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hench LL. Bioceramics. J Am Ceram Soc. 1998;81:1705–28

    Article  CAS  Google Scholar 

  2. Rahaman MN, Brown RF, Bal BS, Day DE. Bioactive glasses for nonbearing applications in total joint replacement. Semin Arthroplasty. 2006;17:102–12.

    Article  Google Scholar 

  3. Jones JR, Gentleman E, Polak J. Bioactive glass scaffolds for bone regeneration. Elements. 2007;3:393–9.

    Article  CAS  Google Scholar 

  4. Hench LL, Splinter RJ, Allen WC, Greenlee TK Jr. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1971;5:117–41.

    Article  Google Scholar 

  5. Pantano CG, Clark AE, Hench LL. Multilayer corrosion films on Bioglass surfaces. J Am Ceram Soc. 1974;57:412–3.

    Article  CAS  Google Scholar 

  6. Hench LL, Wilson J. Surface-active biomaterials. Science. 1984;226:630–6.

    Article  CAS  ADS  PubMed  Google Scholar 

  7. Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999;20:2287–303.

    Article  CAS  PubMed  Google Scholar 

  8. Day DE, White JE, Brown RF, McMenamin KD. Transformation of borate glasses into biologically useful materials. Glass Technol. 2003;44:75–81.

    CAS  Google Scholar 

  9. Wang Q, Huang W, Wang D, Darvell BW, Day DE, Rahaman MN. Preparation of hollow hydroxyapatite microspheres. J Mater Sci: Mater Med. 2006;17:641–6.

    Article  Google Scholar 

  10. Conzone SD, Day DE. Preparation and properties of porous microspheres made from borate glass. J Biomed Mater Res A. 2009;88A:531–42.

    Article  CAS  Google Scholar 

  11. Fu H, Rahaman MN, Day DE. Effect of process variables on the microstructure of hollow hydroxyapatite microspheres prepared by a glass conversion process. J Am Ceram Soc. 2010. doi:10.1111/j.1551-2916.2010.03833.x.

  12. Han X, Du M, Ma Y, Day DE. Evaluation of hydroxyapatite microspheres made from a borate glass to separate protein mixtures. J Mater Sci. 2008;43:5618–25.

    Article  CAS  ADS  Google Scholar 

  13. Huang W, Day DE, Kittiratanapiboon K, Rahaman MN. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J Mater Sci: Mater Med. 2006;17:583–96.

    Article  CAS  Google Scholar 

  14. Huang W, Rahaman MN, Day DE, Li Y. Mechanisms of converting silicate. borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. Phys Chem Glasses: Eur J Glass Sci Technol B. 2006;47:647–58.

    CAS  Google Scholar 

  15. Huang W, Day DE, Rahaman MN. Comparison of the formation of calcium and barium phosphates by the conversion of borate glass in dilute phosphate solution at near room temperature. J Am Ceram Soc. 2007;90:838–44.

    Article  CAS  Google Scholar 

  16. Yao A, Wang D, Huang W, Fu Q, Rahaman MN, Day DE. In vitro bioactive characteristics of borate-based glasses with controllable degradation behavior. J Am Ceram Soc. 2007;90:303–6.

    Article  CAS  Google Scholar 

  17. Fu Q, Rahaman MN, Day DE. Accelerated conversion of silicate bioactive glass (13–93) to hydroxyapatite in aqueous phosphate solution containing polyanions. J Am Ceram Soc. 2009;92:2870–6.

    Article  CAS  Google Scholar 

  18. Clark AE, Hench LL. Early stages of calcium-phosphate layer formation in bioglass. J Non-Cryst Solids. 1989;113:195–202.

    Article  Google Scholar 

  19. Filgueiras MR, LaTorre G, Hench LL. Solution effects on the surface reaction of a bioactive glass. J Biomed Mater Res. 1993;27:445–53.

    Article  CAS  PubMed  Google Scholar 

  20. Rehman I, Bonfield W. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J Mater Sci: Mater Med. 1997;8:1–4.

    Article  CAS  Google Scholar 

  21. Harcharras M, Ennaciri A, Assaaoudi H. Vibrational spectra of double diphosphates M2SrP2O7 (M = Li, Na, K, Rb, Cs). J Can Anal Sci Spectrosc. 2001;46:83–8.

    CAS  Google Scholar 

  22. Harcharras M, Ennaciri A, Rulmont A, Gilbert B. Vibrational spectra and structures of double diphosphates M2CdP2O7 (M = Li, Na, K, Rb, Cs). Spectrochim Acta. 1997;A53:345–52.

    ADS  Google Scholar 

  23. Sarr O, Diop L. The vibrational spectra of the crystalline tripotassium hydrogen pyrophosphates K3HP2O7·3H2O and K3HP2O7. Spectrochim Acta. 1984;A40:1011–5.

    ADS  Google Scholar 

  24. Li Y, Rahaman MN, Bal BS, Day DE, Fu Q. Early stages of calcium phosphate formation on bioactive borosilicate glass in aqueous phosphate solution. J Am Ceram Soc. 2008;91:1528–33.

    Article  CAS  Google Scholar 

  25. Christoffersen J, Christoffersen MR. Kinetics of dissolution of calcium hydroxyapatite: IV. The effect of some biologically important inhibitors. J. Crys Growth. 1981;53:42–54.

    Article  CAS  ADS  Google Scholar 

  26. Christoffersen MR, Balic-Zunic T, Pehrson S, Christoffersen J. Kinetics of growth of triclinic calcium pyrophosphate dehydrate crystals. Cryst Growth Des. 2001;1:463–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed N. Rahaman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, H., Rahaman, M.N., Day, D.E. et al. Effect of pyrophosphate ions on the conversion of calcium–lithium–borate glass to hydroxyapatite in aqueous phosphate solution. J Mater Sci: Mater Med 21, 2733–2741 (2010). https://doi.org/10.1007/s10856-010-4130-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4130-5

Keywords

Navigation