Skip to main content
Log in

Poly(l-lactide-co-glycolide) biodegradable microfibers and electrospun nanofibers for nerve tissue engineering: an in vitro study

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

For tissue engineering applications, the distribution and growth of cells on a scaffold are key requirements. The potential of biodegradable poly(l-lactide-co-glycolide) (PLGA) polymer with different microstructures, as scaffolds for nerve tissue engineering was investigated. In this study, an attempt was made to develop porous nanofibrous scaffolds by the electrospinning method. In this process, polymer fibers with diameters in the nanometer range are formed by subjecting a polymer fluid jet to a high electric field. Attempt was also made to develop microbraided and aligned microfiber scaffolds. A polymer film scaffold was made by solvent casting method. C17.2 nerve stem cells were seeded and cultured on all the four different types of scaffolds under static conditions for 3 days. Scanning electron micrographs showed that the nerve stem cells adhered and differentiated on all the scaffolds and supported neurite outgrowth. Interesting observation was seen in the aligned microfiber scaffolds, where the C17.2 nerve stem cells attached and differentiated along the direction of the fibers. The size and shape of the cell-polymer constructs remained intact. The present study suggests that PLGA is a potential scaffold for nerve tissue engineering and predicts the orientation and growth of nerve stem cells on the scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bandtlow CE (2003) Exp Gerontol 38:79

    Article  CAS  Google Scholar 

  2. Woerly S, Plant GW, Harvery AR (1996) Biomaterials 17:301

    Article  CAS  Google Scholar 

  3. Gurgom RD, Bedi KS, Nurcombe V (2002) J Clin Neurosci 9(6):613

    Article  Google Scholar 

  4. Thomson RC, Shung AK, Yaszemski MJ, Mikos AG (2000) In: Lanza RP, Langer R, Vacanti JP (eds) Principles of tissue engineering. Academic Press, San Diego, p 251

  5. Kenawy E-R, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, Wnek GE (2002) J Control Release 81:57

    Article  CAS  Google Scholar 

  6. Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) Biomaterials 24:2077

    Article  CAS  Google Scholar 

  7. Kenawy E-R, Layman JM, Watkins JR, Bowlin GL, Matthews JA, Simpson DG, Wnek GE (2003) Biomaterials 24:907

    Article  CAS  Google Scholar 

  8. Zong X, Kim K, Fang D, Ran S, Hsiao B, Chu B (2002) Polymer 42:4402

    Google Scholar 

  9. Snyder EY, Deitcher DL, Walsh C, Arnold-Aldea S, Hartwieg EA, Cepkp CL (1992) Cell 68:33

    Article  CAS  Google Scholar 

  10. Snyder EY, Yoon C, Flax JD, Macklis JD (1997) Proc Natl Acad Sci, USA 94:11663

    Article  CAS  Google Scholar 

  11. Lynch WP, Sharpe AH, Snyder EY (1992) J Virol 73:6841

    Google Scholar 

  12. Holmes TC, Lacalle SD, Su X, Liu G, Rich A, Zhang S (2002) Proc Natl Acad Sci USA 97:6728

    Article  Google Scholar 

  13. Freire E, Gomes FCA, Linden R, Neto VM, Coelho-Sampaio T (2002) J Cell Sci 115:4867

    Article  CAS  Google Scholar 

  14. Miller C, Jeftinija S, Mallapragada S (2001) Tissue Eng 7:705

    Article  CAS  Google Scholar 

  15. Jucker M, Kleinman HK, Ingram DK (1991) J Neurosci Res 28:507

    Article  CAS  Google Scholar 

  16. Rajnicek AM, Britland S, McCaig CD (1991) J Cell Sci 110:2905

    Google Scholar 

  17. Ceballos D, Navarro X, Dubey N, Wendelschafer-Crabb G, Kennedy WR, Tranquillo RT (1999) Exp Neurol 158:290

    Article  CAS  Google Scholar 

  18. Saneinejad S, Shoichet MS (2000) J Biomed Mater Res 50:465

    Article  CAS  Google Scholar 

  19. Wojciak-Stothard B, Curtis ASG, Monaghan W et al (1995) Cell Motil Cytoskeleton 31:147

    Article  CAS  Google Scholar 

  20. Terai H, Hannouche D, Ochoa E, Yamano Y, Vacanti JP (2002) Mater Sci Eng C 20:3

    Article  Google Scholar 

  21. Goldstein AS, Zhu G, Morris GE, Meslenyi RK, Mikos AG (1999) Tissue Eng 5:421

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.B Bini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bini, T., Gao, S., Wang, S. et al. Poly(l-lactide-co-glycolide) biodegradable microfibers and electrospun nanofibers for nerve tissue engineering: an in vitro study. J Mater Sci 41, 6453–6459 (2006). https://doi.org/10.1007/s10853-006-0714-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0714-3

Keywords

Navigation