Skip to main content
Log in

The permeability and stability of microencapsulated epoxy resins

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microcapsules containing self-healing agents have been introduced into polymer to self-heal the microcracks and toughen the brittle matrix. Poly(urea–formaldehyde) (PUF) microcapsules containing epoxy resins are potential for the self-healing and toughening polymer. The resistance to medium surroundings of microcapsules is required. In the present study, PUF microcapsules containing epoxy resins were prepared by in situ polymerization. The effects of diameter, surface morphology and wall thickness on the permeability and stability of microcapsules in thermal and solvent surroundings were investigated. The morphology of microcapsule was investigated using optical microscope (OM), metalloscope (MS) and scanning electron microscope (SEM), respectively. The composition on the surface of microcapsule was analyzed by using energy dispersive analysis of X-ray (EDAX). The thermal properties of microcapsules were investigated using differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). The thermal permeability of core increases and the stability of microcapsule decreases with the enhancement of heating temperature mainly due to the expansion of epoxy resins below 251 °C and the decomposition of PUF above 251 °C. At room temperature, the permeability constants of core materials of microcapsules in acetone solvent are small and they are 1.20 × 10−3 m s−1, 1.39 × 10−3 m s−1 and 1.60 × 10−3 m s−1 corresponding to the microcapsules with diameters of 400 ± 50 μm, 230 ± 40 μm and 120 ± 30 μm. Increasing the surface smoothness, diameter and wall thickness can decrease the permeability and improve the stability of microcapsules in thermal and solvent surroundings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Devy J, Balasse E, Kaplan H, Madoulet C, Andry MC (2006) Int J Pharm 307:194

    Article  CAS  Google Scholar 

  2. Povey AC, Bartsh H, O’Neill IK (1987) Cancer Lett 36:45

    Article  CAS  Google Scholar 

  3. Alabi AO, Che Cob Z, Jones DA, Latchford JW (1999) Aquac Int 7:137

    Article  Google Scholar 

  4. Yúfera M, Pascual E, Fernández-Díaz C (1999) Aquaculture 177:249

    Article  Google Scholar 

  5. McMaster LD, Kokott SA, Slatter P (2005) World J Microbiol Biotechnol 21:723

    Article  Google Scholar 

  6. Kumar A, Stephenson LD, Murray JN (2006) Prog Org Coat 55:244

    Article  CAS  Google Scholar 

  7. Choi HJ, Lee YH, Kim CA, Jhon MS (2000) J Mater Sci Lett 19:533

    Article  CAS  Google Scholar 

  8. Park SY, Cho MS, Kim CA, Choi HJ, Jhon MS (2003) Colloid Polym Sci 282:198

    Article  CAS  Google Scholar 

  9. Kim KS, Lee JY, Park BJ, Sung JH, Chin I, Choi HJ, Lee JH (2006) Colloid Polym Sci 284:813

    Article  CAS  Google Scholar 

  10. Jang IB, Sung JH, Choi HJ (2005) J Mater Sci 40:1031

    Article  CAS  Google Scholar 

  11. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Nature 409:794

    Article  CAS  Google Scholar 

  12. Jung D, Hegeman A, Scottos NR, Geubelle PH, White SR (1997) ASME MD-80:265

  13. Kessler MR, Sottos NR, White SR (2003) Composites: Part A 34:743

    Article  Google Scholar 

  14. Brown EN, White SR, Sottos NR (2002) J Microencapsul 2:139

    Google Scholar 

  15. Kessler MR, White SR (2001) Composites: Part A 32:683

    Article  Google Scholar 

  16. Brown EN, White SR, Sottos NR (2005) Compos Sci Technol 65:2474

    Article  CAS  Google Scholar 

  17. Park SJ, Shin YS, Lee JR (2001) J Colloid Interface Sci 241:502

    Article  CAS  Google Scholar 

  18. Guo HL, Zhao XP (2004) Opt Mater 26:297

    Article  CAS  Google Scholar 

  19. Lee YH, Kim CA, Jang WH, Choi HJ, Jhon MS (2001) Polymer 42:8277

    Article  CAS  Google Scholar 

  20. Lee SJ, Rosenberg M (1999) J Controll Release 61:123

    Article  CAS  Google Scholar 

  21. Makino K, Mack EJ, Okano T, Kim SW (1990) J Controll Release 12:235

    Article  CAS  Google Scholar 

  22. Takao M, Tetsuya T, Ichiro C (1973) BBA – Enzymology 321:653

    Google Scholar 

  23. Bryant YG (1999) ASM BED 44:225

    Google Scholar 

  24. Camino G, Operti L, Trossarelli L (1983) Polym Degrad Stab 3:161

    Article  Google Scholar 

  25. Takamura K, Koishi M, Kondo T (1971) Polymere 248:929

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the special research foundation of doctoral subject from the education department of high school (20050699034) and the graduate staring seed fund of Northwestern Polytechnical University (Z200584).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Zheng Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, L., Liang, GZ., Xie, JQ. et al. The permeability and stability of microencapsulated epoxy resins. J Mater Sci 42, 4390–4397 (2007). https://doi.org/10.1007/s10853-006-0606-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0606-6

Keywords

Navigation