Skip to main content
Log in

Fabrication, modelling and use of porous ceramics for ultrasonic transducer applications

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Porous ceramics are of interest for ultrasonic transducer applications. Porosity allows to decrease acoustical impedance, thus improving transfer of acoustical energy to water or biological tissues. For underwater applications, the dhgh figure of merit can also be improved as compared to dense materials. In the case of high frequency transducers, namely for high resolution medical imaging, thick film technology can be used. The active films are generally porous and this porosity must be controlled. An unpoled porous PZT substrate is also shown to be an interesting solution since it can be used in a screen-printing process and as a backing for the transducer. This paper describes the fabrication process to obtain such materials, presents microstructure analysis as well as functional properties of materials. Modelling is also performed and results are compared to measurements. Finally, transducer issues are addressed through modelling and design of several configurations. The key parameters are identified and their effect on transducer performance is discussed. A comparison with dense materials is performed and results are discussed to highlight in which cases porous piezoceramics can improve transducer performance, and improvements are quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. R.E. Newnham, D.P. Skinner, L.E. Cross, Mater. Res. Bull. 13, 525–536 (1978)

    Article  CAS  Google Scholar 

  2. D.P. Skinner, R.E. Newnham, L.E. Cross, Mater. Res. Bull. 13, 599–607 (1978)

    Article  CAS  Google Scholar 

  3. E.K. Akdogan, M. Allahverdi, A. Safari, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 52(5), 746–775 (2005)

    Article  Google Scholar 

  4. C. Galassi, J. Eur. Ceram. Soc. 24(14), 2951–2958 (2006)

    Article  Google Scholar 

  5. O. Lyckfeldt, J.M.F. Ferreira, Eur. Ceram. Soc. 184, 134–140 (1998)

    Google Scholar 

  6. W.J. Chao, K.S. Chou, Key Eng. Mater. 113, 96–108 (1996)

    Google Scholar 

  7. D. Piazza, C. Capiani, C. Galassi, J. Eur. Ceram. Soc. 25, 3075–3078 (2005)

    Article  CAS  Google Scholar 

  8. T. Zeng, X.L. Dong, S.T. Chen, H. Yang, Ceram. Int. 33(3), 395–399(2006)

    Article  Google Scholar 

  9. R. Krimholtz, D.A. Leedom, G.L. Matthei, Electronic Letters 38, 338–339 (1970)

    Google Scholar 

  10. S. Van Kervel, J.M. Thijssen, Ultrasonics 21, 134–140 (1983)

    Article  Google Scholar 

  11. M. Lethiecq, F. Levassort, L.P. Tran Huu-Hue, M. Alguero, L. Pardo, T. Bove, E. Ringgaard, W. Wolny, New low acoustic impedance piezoelectric material for broadband transducer applications. IEEE Ultrasonics Symposium Proceedings 1153–1156 (2004)

  12. M. Lukacs, T. Olding, M. Sayer, R. Tasker, S. Sherrit, J. Appl. Phys. 85(5), 2835–2843 (1999)

    Article  CAS  Google Scholar 

  13. F. Levassort, L.P. Tran-Huu-Hue, J. Holc, T. Bove, M. Kosec, M. Lethiecq, High performance piezoceramic films on substrates for high frequency imaging. IEEE Ultrasonics Symposium Proceedings 1035–1038 (2001)

  14. P. Maréchal, F. Levassort, J. Holc, L.P. Tran-Huu-Hue, M. Kosec, M. Lethiecq, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 53(8), 1524–1533 (2006)

    Article  Google Scholar 

  15. W.F. Deeg, The Analysis of Dislocation, Crack, and Inclusion Problems in Piezoelectric Solids. Ph.D. Thesis, Stanford University (1980)

  16. M.L. Dunn, Int. J. Eng. Sci. 32(1), 119–131 (1994)

    Article  CAS  Google Scholar 

  17. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. 376–396 (1957)

  18. M.L. Dunn, M. Taya, An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities. Proc. R. Soc. Lond. 265–287 (1993)

  19. M.L. Dunn, M. Taya, Int. J. Solids Struct. 30(2), 161–175 (1993)

    Article  Google Scholar 

  20. M.L. Dunn, M. Taya, J. Am. Ceram. Soc. 76, 1697–1706 (1993)

    Article  CAS  Google Scholar 

  21. C.W. Nan, F.S. Jin, Phys. Rev., B 48(12), 8578–8582 (1993)

    Article  CAS  Google Scholar 

  22. C.W. Nan, J. Appl. Phys. 76(2), 1155–1163 (1994)

    Article  Google Scholar 

  23. B. Wang, Int. J. Solids Struct. 29(3), 293–308 (1992)

    Article  Google Scholar 

  24. B. Wang, S. Du, Int. J. Appl. Electromagn. Mater. 3, 289–295 (1993)

    Google Scholar 

  25. T.E. Gomez Alvarez-Arenas, F. Montero de Espinosa, J. Acoust. Soc. Am. 102(6), 3507–3515 (1997)

    Article  Google Scholar 

  26. A. Perry, C.R. Bowen, Scripta Materiala 41(9),1001–1007 (1999)

    Article  CAS  Google Scholar 

  27. F. Levassort, M. Lethiecq, D. Certon, F. Patat, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 44(2), 445–452 (1997)

    Article  Google Scholar 

  28. F. Levassort, M. Lethiecq, C.E. Millar, L. Pourcelot, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 45(6), 1497–1505 (1998)

    Article  Google Scholar 

  29. F. Levassort, M. Lethiecq, R. Desmare, L.P. Tran-Huu-Hue, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 46(4), 1028–1034 (1999)

    Article  Google Scholar 

  30. K.Y. Hashimoto, M. Yamaguchi, Elastic, Piezoelectric and Dielectric Properties of Composite Materials. IEEE Ultrasonics Symposium Proceedings 697–702 (1986)

  31. H. Banno, Ferroelectrics 50, 3–12 (1983)

    Google Scholar 

  32. K. Rittenmeyer, T. Shrout, W.A. Schulze, R.E. Newnham, Ferroelectrics 41, 189–195 (1982)

    Google Scholar 

  33. H. Banno, Jpn. J. Appl. Phys. 32, 4214–4217 (1993)

    Article  CAS  Google Scholar 

  34. C.R. Bowen, A. Perry, H. Kara, S.W. Mahon, J. Eur. Ceram. Soc. 21, 1463–1467 (2001)

    Article  CAS  Google Scholar 

  35. S.M. Pilgrim, R.E. Newnham, Mater. Res. Bull. 21, 1447–1454 (1986)

    Article  CAS  Google Scholar 

  36. C.R. Bowen, H. Kara, Mater. Chem. Phys. 75, 45–49 (2002)

    Article  CAS  Google Scholar 

  37. M.J. Creedom, W.A. Schulze, Ferroelectrics 153, 333–339 (1994)

    Google Scholar 

  38. M.J. Creedom, W.A. Schulze, Large area piezoelectric composite arrays from distorted reticulated ceramics. IEEE Ultrasonics Symposium Proceedings 527–530 (1996)

  39. R.Y. Ting, Ferroelectrics 67, 143–157 (1986)

    CAS  Google Scholar 

  40. T. Arai, K. Ayusawa, H. Sato, T. Miyata, K. Kawamura, K. Kobayashi, Jpn. J. Appl. Phys. 30, 2253–2255 (1991)

    Article  Google Scholar 

  41. P. Guillaussier, C.A.D. Boucher, Ferroelectrics 187, 121–128 (1996)

    Article  CAS  Google Scholar 

  42. S. Marselli, V. Pavia, C. Galassi, E. Roncari, F. Craciun, G. Guidarelli, J. Acoust. Soc. Am. 106(2), 733–738 (1999)

    Article  Google Scholar 

  43. H. Kara, R. Ramesh, R. Stevens, C.R. Bowen, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 50(3), 289–296 (2003)

    Article  Google Scholar 

  44. V.Yu. Topolov, A.V. Turik, Tech. Phys. 46(9), 1093–1100 (2001)

    Article  CAS  Google Scholar 

  45. V.Yu. Topolov, A.V. Turik, Tech. Phys. Lett. 27(1), 81–83 (2001)

    Article  CAS  Google Scholar 

  46. C.R. Bowen, V.Yu. Topolov, Acta Mater. 51, 4965–4976 (2003)

    Article  CAS  Google Scholar 

  47. R. Desmare, L.P. Tran-Huu-Hue, F. Levassort, M. Lethiecq, Journal Revista de Acustica 33 (2003)

  48. F.S. Foster, C.J. Pavlin, K.A. Harasiewicz, D.A. Christopher, D.H. Turnbull, Ultrasound Med. Biol. 26(1), 1–27 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was performed in the frame of the Piramid FP5 European project (contract no. G5RD-CT-2001-456) and MIND FP6 Network of Excellence (contract no. 515757-2). The authors thank C. Galassi for discussion and bibliography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Levassort.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levassort, F., Holc, J., Ringgaard, E. et al. Fabrication, modelling and use of porous ceramics for ultrasonic transducer applications. J Electroceram 19, 127–139 (2007). https://doi.org/10.1007/s10832-007-9117-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-007-9117-3

Keywords

Navigation