Skip to main content
Log in

Corrosion inhibition of aluminium in acid solutions by some imidazoline derivatives

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

2-Pentadecyl-1,3-imidazoline (PDI), 2-Undecyl-1,3-imidazoline (UDI), 2-Heptadecyl-1,3-imidazoline (HDI), 2-Nonyl-1,3-imidazoline (NI) were synthesized and characterized by FT-IR and NMR Studies. The corrosion inhibition properties of these compounds on aluminium in 1 M HCl and 0.5 M H2SO4 were investigated by weight loss, potentiodynamic polarization, electrochemical impedance and scanning electron microscopic techniques. The weight loss study showed that the inhibition efficiency increases with increase in the concentration of the inhibitor and was found to be inversely related to time and temperature while it shows no significant change with increase in acid concentration. The effectiveness of these inhibitors were in the order of UDI > NI > PDI > HDI .The values of activation energy, free energy of adsorption, heat of adsorption, enthalpy of activation and entropy of activation were also calculated to elaborate the mechanism of corrosion inhibition. The adsorption of these compounds on aluminium surface follows the Langmuir adsorption isotherm. The potentiodynamic polarization data show that the compounds studied are mixed type inhibitors. Electrochemical impedance was used to investigate the mechanism of corrosion inhibition. The surface characteristics of inhibited and uninhibited metal samples were investigated by scanning electron microscopy (SEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Brett CM (1992) Corros Sci 33:203

    Article  CAS  Google Scholar 

  2. Beck TR (1998) Electrochim Acta 33:1321

    Article  Google Scholar 

  3. Hunkeler F, Frankel GS, Bohni H (1987) Corrosion 43:189

    CAS  Google Scholar 

  4. Ahmed Awad I, El-Asklany AH, Fouda AS (1985) J Indian Chem Soc 22:367

    Google Scholar 

  5. Tianpei Z, Guannan M (1999) Corros Sci 41:1937

    Article  Google Scholar 

  6. Fouda AS, El-Semongy MM (1982) J Ind Chem Soc 19:89

    Google Scholar 

  7. Gasparac R, Martin CR, Stupnisek-Lisac E (2000) J Electrochem Soc 147:548

    Article  CAS  Google Scholar 

  8. Zhang DQ, Gao LX, Zhu GD (2004) Corros Sci 46:3031

    Article  CAS  Google Scholar 

  9. Muralidharan S, Iyer SVK (1997) Anti Corros Met Mat 44:100

    Article  CAS  Google Scholar 

  10. Hoffmann K (1953) Imidazole and its derivatives –Part-I. The chemistry of heterocyclic compounds, Interscience publishers, Inc., New York, p 213

    Google Scholar 

  11. ASTM (1994) Standard practice for calculation of corrosion rate and related information from electrochemical measurements, annual book of standards, G 102-89

  12. Schmidt G (1984) Br Corros J 19:99

    Google Scholar 

  13. Hirozawa ST (1995) Proc. 8th Eur. Symp Corros Inhi Ann Univ, Ferrara, Italy, 1:25

  14. Ashassi-Sorkhabi H, Shaabani B, Seifzadeh D, (2005) Electrochim Acta 50:3446

    Article  CAS  Google Scholar 

  15. Juttner K (1990) Electrochim Acta 35:1501

    Article  Google Scholar 

  16. Quraishi MA, Rawat J (2001) Corrosion 19:273

    CAS  Google Scholar 

  17. Quraishi MA, Sardar R (2001) Corrosion 58:103

    Article  Google Scholar 

  18. Jha LJ (1990) Studies of the adsorption of amide derivative during acid corrosion of pure iron & its characterization, PhD thesis, University of Delhi, p 111

  19. Breslin CB, Carrol WM (1993) Corros Sci 34:327

    Article  CAS  Google Scholar 

  20. Khedr MGA, Lashien MS (1992) Corros Sci 33:137

    Article  CAS  Google Scholar 

  21. Rehim SSA, Hassan HH, Amin MA (2001) Mater Chem Phys 70:64

    Article  Google Scholar 

  22. Putilova IN, Balezin SA, Baranik UP (1960) Metallic corrosion inhibitors. Pergamon Press, New York, p 31

    Google Scholar 

  23. Gomma MK, Wahdan MH (1995) Mater Chem Phys 39:209

    Article  CAS  Google Scholar 

  24. Schorr M, Yahalom J (1972) Corros Sci 12:867

    Article  CAS  Google Scholar 

  25. Gomma GK, Wahdan MH (1995) Ind J Chem Technol 2:107

    CAS  Google Scholar 

  26. Orubite-Okorosaye K, Oforka NC (2004), J Appl Sci Environ 8:57

    CAS  Google Scholar 

  27. Atkins PW (1980) Chemisorbed and physisorbed species, a textbook of physical chemistry. University press, Oxford, p 936

    Google Scholar 

  28. Quraishi MA, Mideen AS, Khan MAW, Ajmal M (1994) Ind J Chem Tech 1:329

    CAS  Google Scholar 

  29. Ajmal M, Mideen AS, Quraishi MA (1994) Corros Sci 36:79

    Article  CAS  Google Scholar 

  30. Houyi M, Chen S, Yin B, Zhao S, Liu X (2003) Corros Sci 45:867

    Article  Google Scholar 

  31. Subramaniyam NC, Mayanna S (1985) Corros Sci 25:163

    Article  Google Scholar 

  32. Quraishi MA, Jamal D, Saxena N (2005) Ind J Chem Tech.12:225

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadaf Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quraishi, M.A., Rafiquee, M.Z.A., Khan, S. et al. Corrosion inhibition of aluminium in acid solutions by some imidazoline derivatives. J Appl Electrochem 37, 1153–1162 (2007). https://doi.org/10.1007/s10800-007-9379-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-007-9379-0

Keywords

Navigation