Skip to main content
Log in

Modal-Hamiltonian Interpretation of Quantum Mechanics and Casimir Operators: The Road Toward Quantum Field Theory

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The general aim of this paper is to extend the Modal-Hamiltonian interpretation of quantum mechanics to the case of relativistic quantum mechanics with gauge U(1) fields. In this case we propose that the actual-valued observables are the Casimir operators of the Poincaré group and of the group U(1) of the internal symmetry of the theory. Moreover, we also show that the magnitudes that acquire actual values in the relativistic and in the non-relativistic cases are correctly related through the adequate limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lombardi, O., Castagnino, M.: Stud. Hist. Philos. Mod. Phys. 39, 380 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Castagnino, M., Lombardi, O.: J. Phys. Conf. Ser. 128, 012014 (2008)

    Article  ADS  Google Scholar 

  3. Ardenghi, J.S., Castagnino, M., Lombardi, O.: Found. Phys. 39, 1023 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Lombardi, O., Castagnino, M., Ardenghi, J.S.: Theoria 24, 5 (2009)

    MATH  Google Scholar 

  5. Lombardi, O., Castagnino, M., Ardenghi, J.S.: Stud. Hist. Philos. Mod. Phys. 41, 93 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dieks, D., Vermaas, P.E.: The Modal Interpretation of Quantum Mechanics. Kluwer Academic, Dordrecht (1998)

    Book  MATH  Google Scholar 

  7. Harshman, N.L., Wickramasekara, S.: Phys. Rev. Lett. 98, 080406 (2007)

    Article  ADS  Google Scholar 

  8. Harshman, N.L., Wickramasekara, S.: Open Syst. Inf. Dyn. 14, 341 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kochen, S., Specker, E.: J. Math. Mech. 17, 59 (1967)

    MATH  MathSciNet  Google Scholar 

  10. Vermaas, P.E.: Stud. Hist. Philos. Mod. Phys. 27, 133 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Weinberg, S.: The Quantum Theory of Fields, Volume I: Foundations. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  12. Bose, S.K.: Commun. Math. Phys. 169, 385 (1995)

    Article  MATH  ADS  Google Scholar 

  13. Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover, New York (1931)

    MATH  Google Scholar 

  14. Ballentine, L.: Quantum Mechanics, a Modern Development. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  15. Wigner, E.P.: Ann. Math. 40, 149 (1939)

    Article  MathSciNet  Google Scholar 

  16. Bargmamm, V.: Ann. Math. 59, 1 (1954)

    Article  Google Scholar 

  17. Levy-Leblond, J.M.: J. Math. Phys. 4, 776 (1963)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Brading, K., Castellani, E.: Symmetries and invariances in classical physics. In: Butterfield, J., Earman, J. (eds.) Philosophy of Physics. North-Holland, Amsterdam (2007)

    Google Scholar 

  19. Minkowski, H.: Space and time. In: Perrett, W., Jeffrey, G.B. (eds.) The Principle of Relativity. A Collection of Original Memoirs on the Special and General Theory of Relativity. Dover, New York (1923)

    Google Scholar 

  20. Weyl, H.: Symmetry. Princeton University Press, Princeton (1952)

    MATH  Google Scholar 

  21. Auyang, S.Y.: How is Quantum Field Theory Possible? Oxford University Press, Oxford (1995)

    Google Scholar 

  22. Nozick, R.: Invariances: The Structure of the Objective World. Harvard University Press, Harvard (2001)

    Google Scholar 

  23. Brading, K., Castellani, E. (eds.): Symmetries in Physics: Philosophical Reflections. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  24. Earman, J.: Philos. Sci. 69, S209 (2002)

    Article  MathSciNet  Google Scholar 

  25. Earman, J.: Philos. Sci. 71, 1227 (2004)

    Article  MathSciNet  Google Scholar 

  26. Bacry, H., Levy Léblond, J.-M.: J. Math. Phys. 9, 1605 (1968)

    Article  MATH  ADS  Google Scholar 

  27. Haag, R.: Questions in quantum physics: a personal view. arXiv:hep-th/0001006 (2006)

  28. Cariñena, J.F., del Olmo, M.A., Santander, M.: J. Phys. A, Math. Gen. 14, 1 (1981)

    Article  ADS  Google Scholar 

  29. Ardenghi, J.S., Campoamor-Stursberg, R., Castagnino, M.: J. Math. Phys. 50, 103526 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  30. Greiner, W.: Relativistic Quantum Mechanics. Springer, Berlin (2000)

    MATH  Google Scholar 

  31. Colussi, V., Wickramasekara, S.: Ann. Phys. 323, 3020 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Le Bellac, M., Levy-Léblond, J.M.: Nuovo Cimento 14B, 217 (1973)

    Google Scholar 

  33. Coleman, S., Mandula, J.: Phys. Rev. 159, 1251 (1967)

    Article  MATH  ADS  Google Scholar 

  34. Kaku, M.: Quantum Field Theory, A Modern Introduction. Oxford University Press, New York (1993)

    Google Scholar 

  35. Weinberg, S.: The Quantum Theory of Fields. Vol. III: Supersymmetry. Cambridge University Press, New York (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Sebastián Ardenghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ardenghi, J.S., Castagnino, M. & Lombardi, O. Modal-Hamiltonian Interpretation of Quantum Mechanics and Casimir Operators: The Road Toward Quantum Field Theory. Int J Theor Phys 50, 774–791 (2011). https://doi.org/10.1007/s10773-010-0614-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-010-0614-9

Keywords

Navigation