Skip to main content
Log in

Boundary term in metric f (R) gravity: field equations in the metric formalism

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The main goal of this paper is to get in a straightforward form the field equations in metric f (R) gravity, using elementary variational principles and adding a boundary term in the action, instead of the usual treatment in an equivalent scalar–tensor approach. We start with a brief review of the Einstein–Hilbert action, together with the Gibbons–York–Hawking boundary term, which is mentioned in some literature, but is generally missing. Next we present in detail the field equations in metric f (R) gravity, including the discussion about boundaries, and we compare with the Gibbons–York–Hawking term in General Relativity. We notice that this boundary term is necessary in order to have a well defined extremal action principle under metric variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Will C.M.: Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  2. Misner C.W., Thorne K.S., Wheeler J.H.: Gravitation. W.H. Freeman and Company, Reading (1973)

    Google Scholar 

  3. Wald R.M.: General Relativity. The University of Chicago Press, Chicago (1984)

    MATH  Google Scholar 

  4. Poisson E.: A Relativist’s Toolkit—The Mathematics of Black-Hole Mechanics. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  5. Padmanabhan T.: Gravitation: Foundations and Frontiers. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  6. Weinberg S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)

    Google Scholar 

  7. Carroll S.M.: Spacetime and Geometry: An Introduction to General Relativity. Addison Wesley, San Francisco (2004)

    MATH  Google Scholar 

  8. Hawking S.W., Ellis J.F.R.: The Large Scale Structure of Space–Time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  9. Gibbons G.W., Hawking S.W.: Action integrals and partition functions in quantum gravity. Phys. Rev. D 15, 27–52 (1977)

    MathSciNet  Google Scholar 

  10. Hawking S.W., Horowitz G.T.: The gravitational Hamiltonian, action, entropy and surface terms. Class. Quantum. Grav. 13, 1487–1498 (1996) arXiv:gr-qc/9501014

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Schmidt H.-J.: Variational derivatives of arbitrarily high order and multi-inflation cosmological models. Class. Quantum Grav. 7, 1023–1031 (1990)

    Article  MATH  ADS  Google Scholar 

  12. Wands D.: Extended gravity theories and the Einstein–Hilbert action Class. Quantum Grav. 11, 269–280 (1994) arXiv:gr-qc/9307034

    Article  MathSciNet  ADS  Google Scholar 

  13. Farhoudi M.: On higher order gravities, their analogy to GR, and dimensional dependent version of Duff’s trace anomaly relation. Gen. Relativ. Gravit. 38, 261–1284 (2006) arXiv:physics/0509210v2

    Article  MathSciNet  Google Scholar 

  14. Querella, L.: Variational principles and cosmological models in higher-order gravity. PhD thesis (1998). arXiv:gr-qc/9902044v1

  15. Nojiri S., Odintsov S.D.: Modified gravity as an alternative for Lambda-CDM cosmology. J. Phys. A 40, 6725–6732 (2007) arXiv:hep-th/0610164

    Article  MATH  ADS  Google Scholar 

  16. Sami, M.: Dark energy and possible alternatives (2009). arXiv:0901.0756

  17. Borowiec, A., Godlowski, W., Szydlowski, M.: Dark matter and dark energy as a effects of modified gravity. ECONF C0602061, 09 (2006). arXiv:astro-ph/0607639v2

  18. Durrer R., Maartens R.: Dark energy and dark gravity: theory overview. Gen. Relativ. Gravit. 40, 301–328 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Carroll S.M., Duvvuri V., Trodden M., Turner M.S.: Is cosmic speed-up due to new gravitational physics?. Phys. Rev. D 70, 043528 (2004) arXiv:astro-ph/0306438

    Article  ADS  Google Scholar 

  20. Nojiri, S., Odintsov, S.D.: Introduction to modified gravity and gravitational alternative for dark energy. ECONF C0602061, 06 (2006). arXiv:hep-th/0601213

  21. Capozziello S., Francaviglia M.: Extended theories of gravity and their cosmological and astrophysical applications. Gen. Relativ. Gravit. 40, 357–420 (2008) arXiv:0706.1146v2

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Faraoni, V.: f (R) gravity: successes and challenges (2008). arXiv:0810.2602

  23. Sotiriou, T.P.: 6+1 lessons from f (R) gravity. J. Phys. Conf. Ser. 189, 012039 (2009). arXiv:0810.5594

  24. Capozziello, S., De Laurentis, M., Faraoni, V.: A bird’s eye view of f (R)-gravity (2009). arXiv:0909.4672

  25. Sotiriou, T.P., Faraoni, V.: f (R) Theories of gravity (2008). arXiv:0810.2602

  26. Buchdahl H.A.: Non-linear Lagrangians and cosmological theory. Mon. Notices R. Astron. Soc. 150, 1–8 (1970)

    ADS  Google Scholar 

  27. Barth N.H.: The fourth-order gravitational action for manifolds with boundaries. Class. Quantum Grav. 2, 497–513 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Nojiri S., Odintsov S.D.: Brane-world cosmology in higher derivative gravity or warped compactification in the next-to-leading order of AdS/CFT correspondence. JHEP 0007, 049 (2000) arXiv:hep-th/0006232

    Article  MathSciNet  ADS  Google Scholar 

  29. Nojiri S., Odintsov S.D.: Is brane cosmology predictable? Gen. Relativ. Gravit. 37, 1419–1425 (2005) arXiv:hep-th/0409244

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Madsen M.S., Barrow J.D.: De Sitter ground states and boundary terms in generalized gravity. Nucl. Phys. B 323, 242–252 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  31. Fatibene L., Ferraris M., Francaviglia M.: Augmented variational principles and relative conservation laws in classical field theory. Int. J. Geom. Methods Mod. Phys. 2, 373–392 (2005) arXiv:math-ph/0411029v1

    Article  MATH  MathSciNet  Google Scholar 

  32. Francaviglia M., Raiteri M.: Hamiltonian, energy and entropy in general relativity with non-orthogonal boundaries. Class. Quant. Grav. 19, 237–258 (2002) arXiv:grqc/ 0107074v1

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Casadio R., Gruppuso A.: On boundary terms and conformal transformations in curved spacetimes. Int. J. Mod. Phys. D 11, 703–714 (2002) arXiv:gr-qc/0107077

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Balcerzak, A., Dabrowski, M.P.: Gibbons-Hawking boundary terms and junction conditions for higher-order brane gravity models (2008). arXiv:0804.0855

  35. Nojiri S., Odintsov S.D.: Finite gravitational action for higher derivative and stringy gravities. Phys. Rev. D 62, 064018 (2000) arXiv:hep-th/9911152

    Article  MathSciNet  ADS  Google Scholar 

  36. Dabrowski, M.P., Balcerzak, A.: Higher-order brane gravity models (2009). arXiv:0909.1079

  37. Nojiri S., Odintsov S.D., Ogushi S.: Finite action in d5 gauged supergravity and dilatonic conformal anomaly for dual quantum field theory. Phys. Rev. D 62, 124002 (2000) arXiv:hep-th/0001122v4

    Article  MathSciNet  ADS  Google Scholar 

  38. Dyer E., Hinterbichler K.: Boundary terms, variational principles and higher derivative modified gravity. Phys. Rev. D. 79, 024028 (2009) arXiv:0809.4033

    Article  MathSciNet  ADS  Google Scholar 

  39. Sotiriou, T.P.: Modified actions for gravity: theory and phenomenology. PhD thesis, International School for Advanced Studies (2007). arXiv:0710.4438v1

  40. Sotiriou T.P., Liberati S.: Metric-affine f(R) theories of gravity. Ann. Phys. 322, 935–966 (2007) arXiv:gr-qc/0604006v2

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Castañeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guarnizo, A., Castañeda, L. & Tejeiro, J.M. Boundary term in metric f (R) gravity: field equations in the metric formalism. Gen Relativ Gravit 42, 2713–2728 (2010). https://doi.org/10.1007/s10714-010-1012-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-010-1012-6

Keywords

Navigation