Skip to main content

Advertisement

Log in

Synergistic efficacy of sorafenib and genistein in growth inhibition by down regulating angiogenic and survival factors and increasing apoptosis through upregulation of p53 and p21 in malignant neuroblastoma cells having N-Myc amplification or non-amplification

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Neuroblastoma is an extracranial, solid, and heterogeneous malignancy in children. The conventional therapeutic modalities are mostly ineffective and thus new therapeutic strategies for malignant neuroblastoma are urgently warranted. We examined the synergistic efficacy of combination of sorafenib (SF) and genistein (GST) in human malignant neuroblastoma SK-N-DZ (N-Myc amplified) and SH-SY5Y (N-Myc non-amplified) cell lines. MTT assay showed dose-dependent decrease in cell viability and the combination therapy more prominently inhibited the cell proliferation in both cell lines than either treatment alone. Apoptosis was confirmed morphologically by Wright staining. Flow cytometric analysis of cell cycle phase distribution and Annexin V-FITC/PI staining showed increase in subG1 DNA content and early apoptosis, respectively, after treatment with the combination of drugs. Apoptosis was further confirmed by scanning electron microscopy. Combination therapy showed activation of caspase-8, cleavage of Bid to tBid, increase in p53 and p21 expression, down regulation of anti-apoptotic Mcl-1, and increase in Bax:Bcl-2 ratio to trigger apoptosis. Down regulation of MDR, hTERT, N-Myc, VEGF, FGF-2, NF-κB, p-Akt, and c-IAP2 indicated suppression of angiogenic and survival pathways. Mitochondrial release of cytochrome c and Smac into cytosol indicated involvement of mitochondia in apoptosis. Increases in proteolytic activities of calpain and caspase-3 were also confirmed. Our results suggested that combination of SF and GST inhibited angiogenic and survival factors and increased apoptosis via receptor and mitochondria mediated pathways in both neuroblastoma SK-N-DZ and SH-SY5Y cell lines. Thus, this combination of drugs could be a potential therapeutic strategy against human malignant neuroblastoma cells having N-Myc amplification or non-amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hiyama E, Iehara T, Sugimoto T, Fukuzawa M, Hayashi Y, Sasaki F, Sugiyama M, Kondo S, Yoneda A, Yamaoka H, Tajiri T, Akazawa K, Ohtaki M (2008) Effectiveness of screening for neuroblastoma at 6 months of age: a retrospective population-based cohort study. Lancet 371:1173–1180

    Article  PubMed  Google Scholar 

  2. Brown A, Jolly P, Wei H (1998) Genistein modulates neuroblastoma cell proliferation and differentiation through induction of apoptosis and regulation of tyrosine kinase activity and N-myc expression. Carcinogenesis 19:991–997

    Article  CAS  PubMed  Google Scholar 

  3. Marcus K, Johnson M, Adam RM, O'Reilly MS, Donovan M, Atala A, Freeman MR, Soker S (2005) Tumor cell-associated neuropilin-1 and vascular endothelial growth factor expression as determinants of tumor growth in neuroblastoma. Neuropathology 25:178–187

    Article  PubMed  Google Scholar 

  4. Peet AC, McConville C, Wilson M, Levine BA, Reed M, Dyer SA, Edwards EC, Strachan MC, McMullan DJ, Wilkes TM, Grundy RG (2007) 1H MRS identifies specific metabolite profiles associated with MYCN-amplified and non-amplified tumour subtypes of neuroblastoma cell lines. NMR Biomed 20:692–700

    Article  CAS  PubMed  Google Scholar 

  5. Huynh H, Lee JW, Chow PK, Ngo VC, Lew GB, Lam IW, Ong HS, Chung A, Soo KC (2009) Sorafenib induces growth suppression in mouse models of gastrointestinal stromal tumor. Mol Cancer Ther 8:152–159

    Article  CAS  PubMed  Google Scholar 

  6. Jane EP, Premkumar DR, Pollack IF (2006) Coadministration of sorafenib with rottlerin potently inhibits cell proliferation and migration in human malignant glioma cells. J Pharmacol Exp Ther 319:1070–1080

    Article  CAS  PubMed  Google Scholar 

  7. Yang F, Van Meter TE, Buettner R, Hedvat M, Liang W, Kowolik CM, Mepani N, Mirosevich J, Nam S, Chen MY, Tye G, Kirschbaum M, Jove R (2008) Sorafenib inhibits signal transducer and activator of transcription 3 signaling associated with growth arrest and apoptosis of medulloblastomas. Mol Cancer Ther 7:3519–3526

    Article  CAS  PubMed  Google Scholar 

  8. Sarkar FH, Adsule S, Padhye S, Kulkarni S, Li Y (2006) The role of genistein and synthetic derivatives of isoflavone in cancer prevention and therapy. Mini Rev Med Chem 6:401–407

    Article  CAS  PubMed  Google Scholar 

  9. Li Z, Li J, Mo B, Hu C, Liu H, Qi H, Wang X, Xu J (2008) Genistein induces cell apoptosis in MDA-MB-231 breast cancer cells via the mitogen-activated protein kinase pathway. Toxicol In Vitro 22:1749–1753

    Article  CAS  PubMed  Google Scholar 

  10. Sergeev IN (2004) Genistein induces Ca2+-mediated, calpain/caspase-12-dependent apoptosis in breast cancer cells. Biochem Biophys Res Commun 321:462–467

    Article  CAS  PubMed  Google Scholar 

  11. Das A, Banik NL, Ray SK (2006) Mechanism of apoptosis with the involvement of calpain and caspase cascades in human malignant neuroblastoma SH-SY5Y cells exposed to flavonoids. Int J Cancer 119:2575–2585

    Article  CAS  PubMed  Google Scholar 

  12. Purnanam KL, Boustany RM (1999) In Assessment of cell viability and histochemical methods in apoptosis. In: Hannun YA, Boustany RM (eds) Apoptosis in neurobiology. CRC, New York, pp 129–152

    Google Scholar 

  13. Karmakar S, Weinberg MS, Banik NL, Patel SJ, Ray SK (2006) Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphane. Neuroscience 141:1265–1280

    Article  CAS  PubMed  Google Scholar 

  14. Karmakar S, Banik NL, Patel SJ, Ray SK (2007) 5-Aminolevulinic acid-based photodynamic therapy suppressed survival factors and activated proteases for apoptosis in human glioblastoma U87MG cells. Neurosci Lett 415:242–247

    Article  CAS  PubMed  Google Scholar 

  15. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  CAS  PubMed  Google Scholar 

  16. Choi YH, Choi BT, Lee WH, Rhee SH, Park KY (2001) Doenjang hexane fraction-induced G1 arrest is associated with the inhibition of pRB phosphorylation and induction of Cdk inhibitor p21 in human breast carcinoma MCF-7 cells. Oncol Rep 8:1091–1096

    CAS  PubMed  Google Scholar 

  17. Shusterman S, Maris JM (2005) Prospects for therapeutic inhibition of neuroblastoma angiogenesis. Cancer Lett 228:171–179

    Article  CAS  PubMed  Google Scholar 

  18. Zaghloul N, Hernandez SL, Bae JO, Huang J, Fisher JC, Lee A, Kadenhe-Chiweshe A, Kandel JJ, Yamashiro DJ (2009) Vascular endothelial growth factor blockade rapidly elicits alternative proangiogenic pathways in neuroblastoma. Int J Oncol 34:401–407

    CAS  PubMed  Google Scholar 

  19. Ribatti D, Marimpietri D, Pastorino F, Brignole C, Nico B, Vacca A, Ponzonim M (2004) Angiogenesis in neuroblastoma. Ann N Y Acad Sci USA 1028:133–142

    Article  CAS  Google Scholar 

  20. Ray SK, Karmakar S, Nowak MW, Banik NL (2006) Inhibition of calpain and caspase-3 prevented apoptosis and preserved electrophysiological properties of voltage-gated and ligand-gated ion channels in rat primary cortical neurons exposed to glutamate. Neuroscience 139:577–595

    Article  CAS  PubMed  Google Scholar 

  21. Tran MA, Smith CD, Kester M, Robertson GP (2008) Combining nanoliposomal ceramide with sorafenib synergistically inhibits melanoma and breast cancer cell survival to decrease tumor development. Clin Cancer Res 14:3571–3581

    Article  CAS  PubMed  Google Scholar 

  22. Lasithiotakis KG, Sinnberg TW, Schittek B, Flaherty KT, Kulms D, Maczey E, Garbe C, Meier FE (2008) Combined inhibition of MAPK and mTOR signaling inhibits growth, induces cell death, and abrogates invasive growth of melanoma cells. J Invest Dermatol 128:2013–2023

    Article  CAS  PubMed  Google Scholar 

  23. Das A, Banik NL, Ray SK (2009) Retinoids induce differentiation and downregulate telomerase activity and N-Myc to increase sensitivity to flavonoids for apoptosis in human malignant neuroblastoma SH-SY5Y cells. Int J Oncol 34:757–765

    CAS  PubMed  Google Scholar 

  24. Ismail IA, Kang KS, Lee HA, Kim JW, Sohn YK (2007) Genistein-induced neuronal apoptosis and G2/M cell cycle arrest is associated with MDC1 up-regulation and PLK1 down-regulation. Eur J Pharmacol 575:12–20

    Article  CAS  PubMed  Google Scholar 

  25. Thasni KA, Rojini G, Rakesh SN, Ratheeshkumar T, Babu MS, Srinivas G, Banerji A, Srinivas P (2008) Genistein induces apoptosis in ovarian cancer cells via different molecular pathways depending on Breast Cancer Susceptibility gene-1 (BRCA1) status. Eur J Pharmacol 588:158–164

    Article  CAS  PubMed  Google Scholar 

  26. Di Francesco AM, Meco D, Torella AR, Barone G, D'Incalci M, Pisano C, Carminati P, Riccardi R (2007) The novel atypical retinoid ST1926 is active in ATRA resistant neuroblastoma cells acting by a different mechanism. Biochem Pharmacol 73:643–655

    Article  PubMed  Google Scholar 

  27. Goldschneider D, Blanc E, Raguénez G, Barrois M, Legrand A, Le Roux G, Haddada H, Bénard J, Douc-Rasy S (2004) Differential response of p53 target genes to p73 overexpression in SH-SY5Y neuroblastoma cell line. J Cell Sci 117:293–301

    Article  CAS  PubMed  Google Scholar 

  28. Moll UM, LaQuaglia M, Bénard J, Riou G (1995) Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. Proc Natl Acad Sci USA 92:4407–4411

    Article  CAS  PubMed  Google Scholar 

  29. Zhang W, Konopleva M, Ruvolo VR, McQueen T, Evans RL, Bornmann WG, McCubrey J, Cortes J, Andreeff M (2008) Sorafenib induces apoptosis of AML cells via Bim-mediated activation of the intrinsic apoptotic pathway. Leukemia 22:808–818

    Article  CAS  PubMed  Google Scholar 

  30. Yeh TC, Chiang PC, Li TK, Hsu JL, Lin CJ, Wang SW, Peng CY, Guh JH (2007) Genistein induces apoptosis in human hepatocellular carcinomas via interaction of endoplasmic reticulum stress and mitochondrial insult. Biochem Pharmacol 73:782–792

    Article  CAS  PubMed  Google Scholar 

  31. Panka DJ, Wang W, Atkins MB, Mier JW (2006) The Raf inhibitor BAY 43–9006 (Sorafenib) induces caspase-independent apoptosis in melanoma cells. Cancer Res 66:1611–1619

    Article  CAS  PubMed  Google Scholar 

  32. Castro AF, Altenberg GA (1997) Inhibition of drug transport by genistein in multidrug-resistant cells expressing P-glycoprotein. Biochem Pharmacol 53:89–93

    Article  PubMed  Google Scholar 

  33. Krams M, Rudolph P, Harms D (2004) Proliferation and hTERT expression in neuroblastoma. Pathologe 25:317–323

    Article  CAS  PubMed  Google Scholar 

  34. Matsumoto M (1991) Inhibitors for protein tyrosine kinases, erbstatin, genistein and herbimycin A, induce differentiation of human neural tumor cell lines. Nippon Geka Hokan 60:113–121

    CAS  PubMed  Google Scholar 

  35. Jagadeesh S, Kyo S, Banerjee PP (2006) Genistein represses telomerase activity via both transcriptional and posttranslational mechanisms in human prostate cancer cells. Cancer Res 66:2107–2115

    Article  CAS  PubMed  Google Scholar 

  36. Eggert A, Ikegaki N, Kwiatkowski J, Zhao H, Brodeur GM, Himelstein BP (2000) High-level expression of angiogenic factors is associated with advanced tumor stage in human neuroblastomas. Clin Can Res 6:1900–1908

    CAS  Google Scholar 

  37. Schomber T, Zumsteg A, Strittmatter K, Crnic I, Antoniadis H, Littlewood-Evans A, Wood J, Christofori G (2009) Differential effects of the vascular endothelial growth factor receptor inhibitor PTK787/ZK222584 on tumor angiogenesis and tumor lymphangiogenesis. Mol Cancer Ther 8:55–63

    Article  CAS  PubMed  Google Scholar 

  38. Murphy DA, Makonnen S, Lassoued W, Feldman MD, Carter C, Lee WM (2006) Inhibition of tumor endothelial ERK activation, angiogenesis, and tumor growth by sorafenib (BAY43–9006). Am J Pathol 69:1875–1885

    Article  Google Scholar 

  39. Beg AA, Baltimore B (1996) An essential role for NF-κB in preventing TNF-α-induced cell death. Science 274:782–784

    Article  CAS  PubMed  Google Scholar 

  40. Li Y, Ahmed F, Ali S, Philip PA, Kucuk O, Sarkar FH (2005) Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res 65:6934–6942

    Article  CAS  PubMed  Google Scholar 

  41. Pelloski CE, Lin E, Zhang L, Yung WK, Colman H, Liu JL, Woo SY, Heimberger AB, Suki D, Prados M, Chang S, Barker FG III, Fuller GN, Aldape KD (2006) Prognostic associations of activated mitogen-activated protein kinase and Akt pathways in glioblastoma. Clin Cancer Res 12:3935–3941

    Article  CAS  PubMed  Google Scholar 

  42. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr (1998) NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281:1680–1683

    Article  CAS  PubMed  Google Scholar 

  43. Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42

    Article  CAS  PubMed  Google Scholar 

  44. Makin GW, Corfe BM, Griffiths GJ, Thistlethwaite A, Hickman JA, Dive C (2001) Damage-induced Bax N-terminal change, translocation to mitochondria and formation of Bax dimers/complexes occur regardless of cell fate. EMBO J 20:6306–6315

    Article  CAS  PubMed  Google Scholar 

  45. Rahmani M, Davis EM, Bauer C, Dent P, Grant S (2005) Apoptosis induced by the kinase inhibitor BAY 43–9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J Biol Chem 280:35217–35227

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This investigation was supported in part by the R01 grants (NS-57811 and CA-91460) and from the National Institutes of Health (Bethesda, MD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan K. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy Choudhury, S., Karmakar, S., Banik, N.L. et al. Synergistic efficacy of sorafenib and genistein in growth inhibition by down regulating angiogenic and survival factors and increasing apoptosis through upregulation of p53 and p21 in malignant neuroblastoma cells having N-Myc amplification or non-amplification. Invest New Drugs 28, 812–824 (2010). https://doi.org/10.1007/s10637-009-9324-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-009-9324-7

Keywords

Navigation