Skip to main content

Advertisement

Log in

Chemopreventive efficacy of gallic acid, an antioxidant and anticarcinogenic polyphenol, against 1,2-dimethyl hydrazine induced rat colon carcinogenesis

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Colon cancer is a major cause of morbidity and mortality in developed and developing countries and its etiology is known to be a combination of hereditary, environmental, dietary factors and lack of physical activity. Chemoprevention offers a novel approach to control the incidence of colon cancer. Gallic acid (GA) is a polyphenol widely present in tea and other plants which is popularly used in the traditional medicine of China. The present study was to evaluate the efficacy of GA supplementation on tissue lipid peroxidation and antioxidant defense system in 1,2-dimethyhydrazine (DMH) induced colon carcinogenesis in male Wistar rats. The rats were assorted into six groups, viz., group1 control rats received modified pellet diet; group 2 rats received GA (50 mg/kg body weight) orally along with modified pellet diet; group 3 rats received DMH (20 mg/kg body weight) subcutaneously once a week for the first 15 weeks; groups 4, 5 and 6 rats received GA along with DMH during the initiation, post- initiation stages and the entire period of study respectively. All the rats were sacrificed at the end of 30 weeks and the tissues were evaluated biochemically. We observed decreased lipid peroxidation (LPO) products such as thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LOOH) and conjugated dienes (CD) and diminished levels of antioxidants such as superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), glutathione reductase (GR) and glutathione peroxidase (GPx) in the tissues of DMH treated rats, which were elevated significantly on GA supplementation. Moreover, enhanced activity of ascorbic acid and α-tocopherol levels were also observed in DMH alone treated rats which were significantly reduced on GA supplementation. Our results suggest that GA could exert a significant chemopreventive effect on DMH induced colon carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shike M, Winamer SJ, Greenwald PH, Bolch A, Hill M, Swaroop SV (1998) Primary prevention of colorectal cancer. Bull World Health Org 68:377–385

    Google Scholar 

  2. Greenlee RT, Murray T, Bolden S, Wingo PA (2000) Cancer statistics 2000. CA Cancer J Clin 50:7–33

    Article  CAS  PubMed  Google Scholar 

  3. Yamamoto S (2000) Cancer statistics digest. All cancer mortality of prefectures in Japan. Jpn J Clin Oncol 30:168

    PubMed  Google Scholar 

  4. Goel A, Arnold CN, Boland CR (2001) Multistep progression of colorectal cancer in the setting of microsatellite instability: new details and novel insights. Gastroenterology 121:1497–1502

    Article  CAS  PubMed  Google Scholar 

  5. Goel A, Nagasaka T, Arnold CN, Inoue T, Hamilton C, Niedzwiecki D, Compton C, Mayer RJ, Goldberg R, Bertagnolli MM, Boland CR (2007) The CpG island methylator phenotype and chromosomal instability are inversely correlated in sporadic colorectal cancer. Gastroenterology 132:127–138

    Article  CAS  PubMed  Google Scholar 

  6. Bartsch H, Nair J (2002) Potential role of lipid peroxidation derived DNA damage in human colon carcinogenesis: studies on exocyclic base adducts as stable oxidative stress markers. Cancer Detect Prev 26:308–312

    Article  CAS  PubMed  Google Scholar 

  7. Boland CR, Luciani MG, Gasche C, Goel A (2005) Infection, inflammation, and gastrointestinal cancer. Gut 54:1321–1331

    Article  CAS  PubMed  Google Scholar 

  8. Breimer LH (1990) Molecular mechanisms of oxygen radical carcinogenesis and mutagenesis: the role of DNA base damage. Mol Carcinogen 3:188–197

    Article  CAS  Google Scholar 

  9. Davies KJ (1995) Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 6:1–31

    Google Scholar 

  10. Tada M (2000) Biological activities of antioxidants from herbs in Labiatae. Foods Food Ingred J Jpn 184:33–39

    CAS  Google Scholar 

  11. Fiala ES (1977) Investigations into the metabolism and mode action of the colon carcinogen 1,2- dimethylhydrazine and azoxymethane. Cancer 40:2436–2445

    Article  CAS  PubMed  Google Scholar 

  12. Fiala ES, Sohn OS, Hamilton SR (1987) Effects of chronic dietary ethanol on the in vivo and in vitro metabolism of methylazoxymethanol and methylazoxymethanol induced DNA methylation in the rat colon and liver. Cancer Res 47:5939–5943

    CAS  PubMed  Google Scholar 

  13. Choudhary G, Hansen H (1998) Human health perspective on environmental exposure to hydrazines: a review. Chemosphere 37:801–843

    Article  CAS  PubMed  Google Scholar 

  14. Sun Y (1990) Free radicals, antioxidant enzymes and carcinogenesis. Free Radic Biol Med 8:583–599

    Article  CAS  PubMed  Google Scholar 

  15. Gower J (1988) A role for dietary lipids and antioxidants in the activation of carcinogens. Free Radic Biol Med 5:95–111

    Article  CAS  PubMed  Google Scholar 

  16. Blakey DH, Duncan AM, Wargovich MJ, Goldberg MT, Bruce WR, Heddle JA (1985) Detection of nuclear anomalies in the colonic epithelium of the mouse. Cancer Res 45:242–249

    CAS  PubMed  Google Scholar 

  17. Ma QY, Williamson KE, Rowlands BJ (2002) Variability of cell proliferation in the proximal and distal colon of normal rats and rats with dimethylhydrazine induced carcinogenesis. World J Gastroenterol 8:847–852

    PubMed  Google Scholar 

  18. Halline AG, Dudeja PK, Lashner BA, Brasitas TA (1989) Urinary excretion of NV-acetylspermidine and other acetylated and free polyamines in 1,2-dimethylhydrazine model of experimental rat colon cancer. Cancer Res 49:4721–4723

    CAS  PubMed  Google Scholar 

  19. Steinmetz KA, Potter JD (1991) Vegetables, fruits and cancer, I. Epidemiology. Cancer Causes Control 2:325–357

    Article  CAS  PubMed  Google Scholar 

  20. Kahkonen MP, Hopia AI, Vuorela HJ et al (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962

    Article  CAS  PubMed  Google Scholar 

  21. Madlener S, Illmer C, Horvath Z et al (2007) Gallic acid inhibits ribonucleotide reductase and cyclooxygenases in human HL-60 promyelocytic leukemia cells. Cancer Lett 245:156–162

    Article  CAS  PubMed  Google Scholar 

  22. Gali HU, Perchellet EM, Klish DS, Johnson JM, Perchellet JP (1992) Hydrolyzable tannins: potent inhibitors of hydroperoxide production and tumor promotion in mouse skin treated with 12-Otetradecanoylphorbol-13-acetate in vivo. Int J Cancer 51:425–432

    Article  CAS  PubMed  Google Scholar 

  23. Gali HU, Perchellet EM, Perchellet JP (1991) Inhibition of tumor promoter- induced ornithine decarboxylase activity by tannic acid and other polyphenols in mouse epidermis in vivo. Cancer Res 51:2820–2825

    CAS  PubMed  Google Scholar 

  24. Seo SY, Sharma VK, Sharma NJ (2003) Mushroom tyrosinase: Recent prospects. J Agric Food Chem 51:2837–2853

    Article  CAS  PubMed  Google Scholar 

  25. Hsu CL, Yen GC (2007) Effect of gallic acid on high fat diet-induced dyslipidaemia, hepatosteatosis and oxidative stress in rats. Br J Nutr 98:727–735

    Article  CAS  PubMed  Google Scholar 

  26. Ohkawa H, Ohisi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  27. Rao KS, Recknagel RO (1968) Early onset of lipid peroxidation in rat liver after carbon tetrachloride administration. Exp Mol Pathol 9:271–278

    Article  CAS  PubMed  Google Scholar 

  28. Jiang ZY, Hunt JV, Wolff SP (1992) Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxides in low density lipoprotein. Anal Biochem 202:384–389

    Article  CAS  PubMed  Google Scholar 

  29. Kakkar PS, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Ind J Biochem Biophys 21:130–132

    CAS  Google Scholar 

  30. Sinha KA (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Article  CAS  PubMed  Google Scholar 

  31. Ellman GL (1959) Tissue sulphydryl groups. Arch Biochem Biophys 82:72–77

    Article  Google Scholar 

  32. Carlberg I, Mannervik B (1985) Glutathione reductase. Methods in enzymology, vol. 7. Academic, New York, pp 484–490

    Google Scholar 

  33. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  CAS  PubMed  Google Scholar 

  34. Roe JM, Kuether CA (1943) Detection of ascorbic acid in whole blood, and urine through 2,4-DNPH derivative of dehydroascorbic acid. J Biol Chem 147:399–407

    CAS  Google Scholar 

  35. Baker H, Frank O, DeAngelis B, Feingold S (1980) Plasma tocopherol in man at various times after ingesting free or acetylated tocopherol. Nutr Rep Int 21:531–536

    CAS  Google Scholar 

  36. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin’s phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  37. Saroja M, Balasenthil S, Nagini S (1999) Tissue lipid peroxidation and glutathione dependant enzyme status in patients with oral squamous cell carcinoma. Cell Biochem Funct 17:213–216

    Article  CAS  PubMed  Google Scholar 

  38. Van Rossen ME, Sluiter W, Bonthuis F et al (2000) Scavenging of reactive oxygen species leads to diminished peritoneal tumor recurrence. Cancer Res 60:5625–5629

    PubMed  Google Scholar 

  39. Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879

    Article  CAS  PubMed  Google Scholar 

  40. Cheesman H, Collins H, Proudfoot K et al (1986) Studies on lipid peroxidation in normal and tumor tissues. J Biol Chem 235:507–514

    Google Scholar 

  41. Tanaka T (1997) Effect of diet on human carcinogenesis. Crit Rev Oncol Hematol 25(2):73–95

    Article  CAS  PubMed  Google Scholar 

  42. Tanaka T, Kawabata K, Kakumoto M, Hara A, Murakami A, Kuki W, Takahashi Y, Yonei H, Maeda M, Ota T, Odashima S, Yamane T, Koshimizu K, Ohigashi H (1998) Citrus auraptene exerts dose-dependent chemopreventive activity in rat large bowel tumorigenesis: the inhibition correlates with suppression of cell proliferation and lipid peroxidation and with induction of phase II drug-metabolizing enzymes. Cancer Res 58:2550–2556

    CAS  PubMed  Google Scholar 

  43. Pillai MG, Thampi BS, Menon VP, Leelamma S (1999) Influence of dietary fiber from coconut kernel (Cocos nucifera) on the 1,2-dimethylhydrazine-induced lipid peroxidation in rats. J Nutr Biochem 10:555–560

    Article  CAS  PubMed  Google Scholar 

  44. Schmelz EM, Sullards MC, Dillehay DL, Merrill AH (2000) Colonic cell proliferation and aberrant crypt foci formation are inhibited by dairy glycospingolipids in 1,2-dimethylhydrazine-treated CFI mice. J Nutr 130:522–527

    CAS  PubMed  Google Scholar 

  45. Nakagami K, Uchida T, Ohwada S, Koibuchi Y, Morishita Y (1999) Increased choline kinase activity in 1,2-dimethylhydrazine induced rat colon cancer. Jpn J Cancer Res 90:1212–1217

    CAS  PubMed  Google Scholar 

  46. Vennila S, Karthik KV, Nalini N (2009) Effect of morin on tissue lipid peroxidation and antioxidant status in 1,2-dimethylhydrazine induced experimental colon carcinogenesis. Invest New Drugs 27:21–30, doi:10.1007/s10637-008-9136-1

    Article  Google Scholar 

  47. Aranganathan S, Panneerselvam J, Nalini N (2008) Hesperetin exerts dose dependent chemopreventive effect against 1,2-dimethyl hydrazine induced rat colon carcinogenesis. Invest New Drugs. doi:10.1007/s10637-008-9158-8

  48. Son S, Lewis BA (2002) Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: structure activity relationship. J Agric Food Chem 50:468–472

    Article  CAS  PubMed  Google Scholar 

  49. Lu Z, Nie G, Belton PS, Tang H, Zhao B (2006) Structure–activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem Int 48:263–274

    Article  CAS  PubMed  Google Scholar 

  50. Burton GW, Cheesman KN, Ingold KV, Seater TF (1983) Lipid antioxidants and products of lipid peroxidation as potential tumor protective agents. Biochem Soc Trans 11:261–262

    CAS  PubMed  Google Scholar 

  51. Rajeshkumar NV, Kuttan R (2003) Modulation of carcinogenic response and antioxidant enzymes of rats administered with 1,2- dimethylhydrazine by Picroliv. Cancer Lett 191:137–143

    Article  CAS  PubMed  Google Scholar 

  52. Slaga TJ (1995) Inhibition of the induction of cancer by antioxidants. Adv Exp Med Biol 369:167–174

    CAS  PubMed  Google Scholar 

  53. Hatano T, Edamatsu R, Hiramatsu M, Mori A, Fujita Y, Yasuhara T, Yoshida T, Okuda T (1989) Effects of tannins and related polyphenols on superoxide anion radical, and on, 1,1-diphenyl-2-picrylhydrazyl radical. Chem Pharm Bull 37:2016–2021

    CAS  Google Scholar 

  54. Michiels C, Raes M, Toussaint O, Remach J (1994) Importance of Se-glutathione, catalase, and Cu/Zn superoxide dismutase for cell survival against oxidative stress. Free Radic Biol Med 17:235–248

    Article  CAS  PubMed  Google Scholar 

  55. Meister A (1974) Glutathione, metabolism and function via the gamma-glutamyl cycle. Life Sci 15:177–190

    Article  CAS  PubMed  Google Scholar 

  56. Brigelius-Flohe R (1999) Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 27:951–965

    Article  CAS  PubMed  Google Scholar 

  57. Slater TF, Bendetto C, Burton GW, Cheeseman KH, Ingold KG, Nodes JT (1984) Lipid peroxidation in animal tumors. A disturbance in the control of cell division. In: Thaler-Dao H, Crastes dePaulet A, Paolettiz R (eds) Eicosanoids and cancer. Raven, New York, p 21

    Google Scholar 

  58. Singh RP, Banerjee S, Kumar PVS, Raveesha KA, Rao AR (2006) Tinospora cordifolia induces enzymes of carcinogen/drug metabolism and antioxidant system, and inhibits lipid peroxidation in mice. Phytomedicine 13:74–84

    Article  CAS  PubMed  Google Scholar 

  59. Kim YJ, No JK, Lee JH, Chung HY (2005) 4,4′-Dihydroxybiphenyl as a new potent tyrosinase inhibitor. Biol Pharm Bull 28:323–327

    Article  CAS  PubMed  Google Scholar 

  60. Nerya O, Musa R, Khatib S, Tamir S, Vaya J (2004) Chalcones as potent tyrosinase inhibitors: the effect of hydroxyl positions and numbers. Phytochemistry 65:1389–1395

    Article  CAS  PubMed  Google Scholar 

  61. Tanaka T, Kawabata K, Kakumoto M, Makita H, Ushida J, Honjo S, Hara A, Tsuda H, Mori H (1999) Modifying effects of a flavonoid morin on azoxymethane-induced large bowel tumorigenesis in rats. Carcinogenesis 20:1477–1484

    Article  CAS  PubMed  Google Scholar 

  62. Bertram JS, Kolonel LN, Meyskens FL (1987) Rationale and strategies for chemoprevention of cancer in humans. Cancer Res 47:3012–3031

    CAS  PubMed  Google Scholar 

  63. Mehlhorn RJ, Sumida S, Packer L (1989) Tocopheroxyl radical persistence and tocopherol consumption in liposomes and in vitamin E-enriched rat liver mitochondria and microsomes. J Biol Chem 264:13448–13452

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namasivayam Nalini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giftson, J.S., Jayanthi, S. & Nalini, N. Chemopreventive efficacy of gallic acid, an antioxidant and anticarcinogenic polyphenol, against 1,2-dimethyl hydrazine induced rat colon carcinogenesis. Invest New Drugs 28, 251–259 (2010). https://doi.org/10.1007/s10637-009-9241-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-009-9241-9

Keywords

Navigation