Skip to main content

Advertisement

Log in

Activated platelets enhance ovarian cancer cell invasion in a cellular model of metastasis

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Increased platelet counts and systemic coagulation activation are associated with ovarian cancer progression. Platelet activation occurs in the tumor microenvironment and may influence local invasion and metastasis. We used a cellular model of tumor invasion to investigate the effect of activated platelets on the human ovarian cancer cell line, SKOV3. SKOV3 cells were exposed to washed, thrombin receptor activating peptide (TRAP)-activated or TRAP-naïve platelets under various experimental conditions, and tumor cell invasion was assayed in Matrigel® chambers. The effect of platelets on the content of urokinase plasminogen activator (uPA) and VEGF in SKOV3 cell conditioned medium was measured using an ELISA assay. TRAP-activated platelets stimulated a dose-dependent increase in SKOV3 cell invasion. Exposure to activated platelet membranes and to soluble proteins contained in activated platelet releasate both contributed to the observed increase in invasion. The inhibition of platelet activation with prostaglandin E1 (PGE1) attenuated the invasive capacity of SKOV3 cells. Exposure to platelets resulted in significantly increased uPA and VEGF content of SKOV3 cell conditioned medium. Activated platelets enhance SKOV3 human ovarian cancer cell invasion through Matrigel® and increase the amount of uPA and VEGF secreted into SKOV3 cell conditioned medium. If generalizable to additional cell lines and human disease, this observation may partially explain the adverse prognosis associated with thrombocytosis in ovarian cancer. Platelets, therefore, may represent a potential target for therapeutic intervention in human ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sarach MA, Rovasio RA, Eynard AR (1993) Platelet factors induce chemotactic migration of murine mammary adenocarcinoma cells with different metastatic capabilities. Int J Exp Pathol 74(5):511–517

    PubMed  CAS  Google Scholar 

  2. Poggi A, Vicenzi E, Cioce V et al (1988) Platelet contribution to cancer cell growth and migration: the role of platelet growth factors. Haemostasis 18(1):18–28

    PubMed  CAS  Google Scholar 

  3. Belloc C, Lu H, Soria C et al (1995) The effect of platelets on invasiveness and protease production of human mammary tumor cells. Int J Cancer 60(3):413–417. doi:10.1002/ijc.2910600324

    Article  PubMed  CAS  Google Scholar 

  4. Lewalle JM, Castronovo V, Goffinet G et al (1991) Malignant cell attachment to endothelium of ex vivo perfused human umbilical vein. Modulation by platelets, plasma and fibronectin. Thromb Res 62(4):287–298. doi:10.1016/0049-3848(91)90149-Q

    Article  PubMed  CAS  Google Scholar 

  5. Felding-Habermann B, O’Toole TE, Smith JW et al (2001) Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci USA 98(4):1853–1858. doi:10.1073/pnas.98.4.1853

    Article  PubMed  CAS  Google Scholar 

  6. Jones DS, Wallace AC, Fraser EE (1971) Sequence of events in experimental metastases of Walker 256 tumor: light, immunofluorescent, and electron microscopic observations. J Natl Cancer Inst 46(3):493–504

    PubMed  CAS  Google Scholar 

  7. Nash GF, Turner LF, Scully MF et al (2002) Platelets and cancer. Lancet Oncol 3(7):425–430. doi:10.1016/S1470-2045(02)00789-1

    Article  PubMed  CAS  Google Scholar 

  8. Alonso-Escolano D, Medina C, Cieslik K et al (2006) Protein kinase C{delta} mediates platelet-induced breast cancer cell invasion. J Pharmacol Exp Ther 318(1):373–380. doi:10.1124/jpet.106.103358

    Article  PubMed  CAS  Google Scholar 

  9. Boucharaba A, Serre CM, Gres S et al (2004) Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Invest 114(12):1714–1725

    PubMed  CAS  Google Scholar 

  10. Assoian RK, Sporn MB (1986) Type beta transforming growth factor in human platelets: release during platelet degranulation and action on vascular smooth muscle cells. J Cell Biol 102(4):1217–1223. doi:10.1083/jcb.102.4.1217

    Article  PubMed  CAS  Google Scholar 

  11. Verheul HM, Hoekman K, Luykx-de Bakker S et al (1997) Platelet: transporter of vascular endothelial growth factor. Clin Cancer Res 3(12 Pt 1):2187–2190

    PubMed  CAS  Google Scholar 

  12. Dubernard V, Arbeille BB, Lemesle MB et al (1997) Evidence for an alpha-granular pool of the cytoskeletal protein alpha-actinin in human platelets that redistributes with the adhesive glycoprotein thrombospondin-1 during the exocytotic process. Arterioscler Thromb Vasc Biol 17(10):2293–2305

    PubMed  CAS  Google Scholar 

  13. Kaplan KL, Broekman MJ, Chernoff A et al (1979) Platelet alpha-granule proteins: studies on release and subcellular localization. Blood 53(4):604–618

    PubMed  CAS  Google Scholar 

  14. Coppinger JA, O’Connor R, Wynne K et al (2007) Moderation of the platelet releasate response by aspirin. Blood 109(11):4786–4792. doi:10.1182/blood-2006-07-038539

    Article  PubMed  CAS  Google Scholar 

  15. Ma L, Perini R, McKnight W et al (2005) Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proc Natl Acad Sci USA 102(1):216–220. doi:10.1073/pnas.0406682102

    Article  PubMed  CAS  Google Scholar 

  16. Zacharski LR, Memoli VA, Costantini V et al (1990) Clotting factors in tumour tissue: implications for cancer therapy. Blood Coagul Fibrinolysis 1(1):71–78. doi:10.1097/00001721-199003000-00010

    Article  PubMed  CAS  Google Scholar 

  17. Zacharski LR, Memoli VA, Ornstein DL et al (1993) Tumor cell procoagulant and urokinase expression in carcinoma of the ovary. J Natl Cancer Inst 85(15):1225–1230. doi:10.1093/jnci/85.15.1225

    Article  PubMed  CAS  Google Scholar 

  18. Bastida E, Ordinas A, Giardina SL et al (1982) Differentiation of platelet-aggregating effects of human tumor cell lines based on inhibition studies with apyrase, hirudin, and phospholipase. Cancer Res 42(11):4348–4352

    PubMed  CAS  Google Scholar 

  19. Konecny G, Untch M, Pihan A et al (2001) Association of urokinase-type plasminogen activator and its inhibitor with disease progression and prognosis in ovarian cancer. Clin Cancer Res 7(6):1743–1749

    PubMed  CAS  Google Scholar 

  20. Kuhn W, Schmalfeldt B, Reuning U et al (1999) Prognostic significance of urokinase (uPA) and its inhibitor PAI-1 for survival in advanced ovarian carcinoma stage FIGO IIIc. Br J Cancer 79(11–12):1746–1751. doi:10.1038/sj.bjc.6690278

    Article  PubMed  CAS  Google Scholar 

  21. Schmalfeldt B, Kuhn W, Reuning U et al (1995) Primary tumor and metastasis in ovarian cancer differ in their content of urokinase-type plasminogen activator, its receptor, and inhibitors types 1 and 2. Cancer Res 55(18):3958–3963

    PubMed  CAS  Google Scholar 

  22. Agis H, Kandler B, Fischer MB et al. (2008) Activated platelets increase fibrinolysis of mesenchymal progenitor cells. J Orthop Res. doi: 10.1002/jor.20819

  23. Hsu-Lin S, Berman CL, Furie BC et al (1984) A platelet membrane protein expressed during platelet activation and secretion. Studies using a monoclonal antibody specific for thrombin-activated platelets. J Biol Chem 259(14):9121–9126

    PubMed  CAS  Google Scholar 

  24. Gurney D, Lip GY, Blann AD (2002) A reliable plasma marker of platelet activation: does it exist? Am J Hematol 70(2):139–144. doi:10.1002/ajh.10097

    Article  PubMed  CAS  Google Scholar 

  25. Rao GH, Rao AT (1994) Pharmacology of platelet activation-inhibitory drugs. Indian J Physiol Pharmacol 38(2):69–84

    PubMed  CAS  Google Scholar 

  26. Kobayashi H, Ohi H, Sugimura M et al (1992) Inhibition of in vitro ovarian cancer cell invasion by modulation of urokinase-type plasminogen activator and cathepsin B. Cancer Res 52(13):3610–3614

    PubMed  CAS  Google Scholar 

  27. Wilhelm O, Weidle U, Hohl S et al (1994) Recombinant soluble urokinase receptor as a scavenger for urokinase-type plasminogen activator (uPA). Inhibition of proliferation and invasion of human ovarian cancer cells. FEBS Lett 337(2):131–134. doi:10.1016/0014-5793(94)80259-9

    Article  PubMed  CAS  Google Scholar 

  28. Mandriota SJ, Seghezzi G, Vassalli JD et al (1995) Vascular endothelial growth factor increases urokinase receptor expression in vascular endothelial cells. J Biol Chem 270(17):9709–9716. doi:10.1074/jbc.270.17.9709

    Article  PubMed  CAS  Google Scholar 

  29. Pepper MS, Ferrara N, Orci L et al (1991) Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem Biophys Res Commun 181(2):902–906. doi:10.1016/0006-291X(91)91276-I

    Article  PubMed  CAS  Google Scholar 

  30. Holmes CE, Huang JC, Pace TR et al (2008) Tamoxifen and aromatase inhibitors differentially affect vascular endothelial growth factor and endostatin levels in women with breast cancer. Clin Cancer Res 14(10):3070–3076. doi:10.1158/1078-0432.CCR-07-4640

    Article  PubMed  CAS  Google Scholar 

  31. Bozkurt N, Yuce K, Basaran M et al (2004) Correlation of platelet count with second-look laparotomy results and disease progression in patients with advanced epithelial ovarian cancer. Obstet Gynecol 103(1):82–85

    PubMed  Google Scholar 

  32. Jain S, Zuka M, Liu J et al (2007) Platelet glycoprotein Ib alpha supports experimental lung metastasis. Proc Natl Acad Sci USA 104(21):9024–9028. doi:10.1073/pnas.0700625104

    Article  PubMed  CAS  Google Scholar 

  33. Alves CS, Burdick MM, Thomas SN et al (2008) The dual role of CD44 as a functional P-selectin ligand and fibrin receptor in colon carcinoma cell adhesion. Am J Physiol Cell Physiol 294(4):C907–C916. doi:10.1152/ajpcell.00463.2007

    Article  PubMed  CAS  Google Scholar 

  34. Trikha M, Zhou Z, Timar J et al (2002) Multiple roles for platelet GPIIb/IIIa and alphavbeta3 integrins in tumor growth, angiogenesis, and metastasis. Cancer Res 62(10):2824–2833

    PubMed  CAS  Google Scholar 

  35. Palumbo JS, Talmage KE, Massari JV et al (2005) Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105(1):178–185. doi:10.1182/blood-2004-06-2272

    Article  PubMed  CAS  Google Scholar 

  36. Nieswandt B, Hafner M, Echtenacher B et al (1999) Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res 59(6):1295–1300

    PubMed  CAS  Google Scholar 

  37. Kristiansen G, Denkert C, Schluns K et al (2002) CD24 is expressed in ovarian cancer and is a new independent prognostic marker of patient survival. Am J Pathol 161(4):1215–1221

    PubMed  CAS  Google Scholar 

  38. Suzuki K, Aiura K, Ueda M et al (2004) The influence of platelets on the promotion of invasion by tumor cells and inhibition by antiplatelet agents. Pancreas 29(2):132–140. doi:10.1097/00006676-200408000-00008

    Article  PubMed  CAS  Google Scholar 

  39. Siess W, Lapetina EG (1990) Functional relationship between cyclic AMP-dependent protein phosphorylation and platelet inhibition. Biochem J 271(3):815–819

    PubMed  CAS  Google Scholar 

  40. Chung AW, Jurasz P, Hollenberg MD et al (2002) Mechanisms of action of proteinase-activated receptor agonists on human platelets. Br J Pharmacol 135(5):1123–1132. doi:10.1038/sj.bjp.0704559

    Article  PubMed  CAS  Google Scholar 

  41. Kahn ML, Nakanishi-Matsui M, Shapiro MJ et al (1999) Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest 103(6):879–887. doi:10.1172/JCI6042

    Article  PubMed  CAS  Google Scholar 

  42. Vu TK, Hung DT, Wheaton VI et al (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64(6):1057–1068. doi:10.1016/0092-8674(91)90261-V

    Article  PubMed  CAS  Google Scholar 

  43. Nierodzik ML, Karpatkin S (2006) Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell 10(5):355–362. doi:10.1016/j.ccr.2006.10.002

    Article  PubMed  CAS  Google Scholar 

  44. Dardik R, Savion N, Kaufmann Y et al (1998) Thrombin promotes platelet-mediated melanoma cell adhesion to endothelial cells under flow conditions: role of platelet glycoproteins P-selectin and GPIIb-IIIA. Br J Cancer 77(12):2069–2075

    PubMed  CAS  Google Scholar 

  45. Janowska-Wieczorek A, Wysoczynski M, Kijowski J et al (2005) Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 113(5):752–760. doi:10.1002/ijc.20657

    Article  PubMed  CAS  Google Scholar 

  46. Janowska-Wieczorek A, Marquez-Curtis LA, Wysoczynski M et al (2006) Enhancing effect of platelet-derived microvesicles on the invasive potential of breast cancer cells. Transfusion 46(7):1199–1209. doi:10.1111/j.1537-2995.2006.00871.x

    Article  PubMed  Google Scholar 

  47. Sieuwerts AM, Klijn JG, Henzen-Logmans SC et al (1999) Cytokine-regulated urokinase-type-plasminogen-activator (uPA) production by human breast fibroblasts in vitro. Breast Cancer Res Treat 55(1):9–20. doi:10.1023/A:1006190729866

    Article  PubMed  CAS  Google Scholar 

  48. Rodriguez GC, Haisley C, Hurteau J et al (2001) Regulation of invasion of epithelial ovarian cancer by transforming growth factor-beta. Gynecol Oncol 80(2):245–253. doi:10.1006/gyno.2000.6042

    Article  PubMed  CAS  Google Scholar 

  49. Shiou SR, Datta PK, Dhawan P et al (2006) Smad4-dependent regulation of urokinase plasminogen activator secretion and RNA stability associated with invasiveness by autocrine and paracrine transforming growth factor-beta. J Biol Chem 281(45):33971–33981. doi:10.1074/jbc.M607010200

    Article  PubMed  CAS  Google Scholar 

  50. Mehta P (1984) Potential role of platelets in the pathogenesis of tumor metastasis. Blood 63(1):55–63

    PubMed  CAS  Google Scholar 

  51. Pustilnik TB, Estrella V, Wiener JR et al (1999) Lysophosphatidic acid induces urokinase secretion by ovarian cancer cells. Clin Cancer Res 5(11):3704–3710

    PubMed  CAS  Google Scholar 

  52. Gil OD, Lee C, Ariztia EV et al (2008) Lysophosphatidic acid (LPA) promotes E-cadherin ectodomain shedding and OVCA429 cell invasion in an uPA-dependent manner. Gynecol Oncol 108(2):361–369. doi:10.1016/j.ygyno.2007.10.027

    Article  PubMed  CAS  Google Scholar 

  53. Amirkhosravi A, Mousa SA, Amaya M et al (2003) Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454. Thromb Haemost 90(3):549–554

    PubMed  CAS  Google Scholar 

  54. Nierodzik ML, Klepfish A, Karpatkin S (1995) Role of platelets, thrombin, integrin IIb-IIIa, fibronectin and von Willebrand factor on tumor adhesion in vitro and metastasis in vivo. Thromb Haemost 74(1):282–290

    PubMed  CAS  Google Scholar 

  55. Stone JP, Wagner DD (1993) P-selectin mediates adhesion of platelets to neuroblastoma and small cell lung cancer. J Clin Invest 92(2):804–813. doi:10.1172/JCI116654

    Article  PubMed  CAS  Google Scholar 

  56. Italiano JE Jr, Richardson JL, Patel-Hett S et al (2008) Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 111(3):1227–1233. doi:10.1182/blood-2007-09-113837

    Article  PubMed  CAS  Google Scholar 

  57. Alonso-Escolano D, Strongin AY, Chung AW et al (2004) Membrane type-1 matrix metalloproteinase stimulates tumour cell-induced platelet aggregation: role of receptor glycoproteins. Br J Pharmacol 141(2):241–252. doi:10.1038/sj.bjp.0705606

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a generous grant from the Charles H. Smith Memorial Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. Holmes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmes, C.E., Levis, J.E. & Ornstein, D.L. Activated platelets enhance ovarian cancer cell invasion in a cellular model of metastasis. Clin Exp Metastasis 26, 653–661 (2009). https://doi.org/10.1007/s10585-009-9264-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-009-9264-9

Keywords

Navigation