Skip to main content

Advertisement

Log in

Protectors against doxorubicin-induced cardiotoxicity: Flavonoids

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Doxorubicin is a widely used anthracycline anticancer agent. Its use may cause cardiomyopathy: in fact, the development of cumulative dose-related cardiotoxicity forms the major limitation of clinical doxorubicin use. We therefore searched for protective agents that combine iron-chelating and oxygen radical-scavenging properties. Moreover, any novel protector should not interfere with the cytostatic activity of doxorubicin. After extensive in vitro screening we found that flavonoids could serve this purpose. In particular 7-monohydroxyethylrutoside almost completely protected against the negative inotropic action of doxorubicin in the electrically paced mouse left atrium model. In vivo it gave full protection at 500 mg/kg intraperitoneally against the doxorubicin-induced ST-interval lengthening in the ECG. Moreover, this protector did not influence the antitumor effect of doxorubicin either in vitro using the human ovarian cell lines A2780 and OVCAR-3 and the human breast cancer cell line MCF-7 or in vivo in A2780 and OVCAR-3 subcutaneous xenografts in nude mice. Comparison of various iron chelators suggest that iron, in contrast to the general assumption, might not play a crucial role in the oxidative stress-induced toxicity of doxorubicin. Moreover, incubation of vascular endothelial cells with doxorubicin produced overexpression of adhesion molecules, which could be inhibited by 7-monohydroxyethylrutoside. From a study in human volunteers, we conclude that an intravenous dose of 1500 mg/m2 of 7-monohydroxyethylrutoside is feasible and is safe to be investigated as protection against doxorubicin-induced cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABAP:

azobisamidinopropane

DMSO:

dimethyl sulfoxide

DTNB:

5,5′-dithiobis(2-nitrobenzoic acid)

GSH:

(reduced) glutathione

HUVECs:

human umbilical cord vascular endothelial cells

i.p.:

intraperitoneal(ly)

i.v.:

intravenous(ly)

LDH:

lactate dehydrogenase

VCAM:

vascular cell adhesion molecule

References

  • Abou El Hassan MAI, Verheul HMW, et al. The new cardioprotector monohydroxyethylrutoside protects against doxorubicin-induced inflammatory effects in vitro. Br J Cancer. 2003;89:357–62.

    Article  CAS  PubMed  Google Scholar 

  • Creighton AM, Hellmann K, Whitecross S. Antitumour activity in a series of bisketopiperazines. Nature. 1969;222:384–5.

    Article  CAS  PubMed  Google Scholar 

  • de Celle T, Heeringa P, Strzelecka AE, Bast A, Smits JF, Janssen BJ. Sustained protective effects of 7-monohydroxyethylrutoside in an in vivo model of cardiac ischemia-reperfusion. Eur J Pharmacol. 2004;494:205–12.

    Article  PubMed  Google Scholar 

  • Decorti G, Bartoli Klugmann F, Mallardi F, et al. Effects of ICRF 159 on adriamycin-induced cardiomyopathy in rats. Cancer Lett. 1983;19:77–83.

    Article  CAS  PubMed  Google Scholar 

  • de Jong J, Schoofs PR, Snabilié AM, Bast A, van der Vijgh WJF. The role of biotransformation in anthracycline-induced cardiotoxicity in mice. J Pharmacol Exp Pharmacol. 1993;266:1312–20.

    Google Scholar 

  • den Hartog GJM, Haenen GRRM, Boven E, van der Vijgh WJF, Bast A. Lecithinized copper, zinc-superoxide dismutase as a protector against doxorubicin-induced cardiotoxicity in mice. Toxicol Appl Pharmacol. 2004;194:180–8.

    Article  Google Scholar 

  • Doroshow JH. Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase. Cancer Res. 1983;43:4543–51.

    CAS  PubMed  Google Scholar 

  • Frishman WH, Sung HM, Yee HC, et al. Cardiovascular toxicity with cancer chemotherapy. Curr Probl Cancer. 1997;21:301–60.

    Article  CAS  PubMed  Google Scholar 

  • Goeptar AR, Te Koppele JM, Lamme EK, Piqué JM, Vermeulen NPE. Cytochrome P450 2B1-mediated one-electron reduction of adriamycin: a study with rat liver microsomes and purified enzymes. Mol Pharmacol. 1993;44:1267–77.

    CAS  PubMed  Google Scholar 

  • Holcenberg JS, Tutsch KD, Earhart RH, et al. Phase I study of ICRF-187 in paediatric cancer patients and comparison of its pharmacokinetics in children and adults. Cancer Treat Rep. 1986;70:703–9.

    CAS  PubMed  Google Scholar 

  • Hüsken BCP, de Jong J, Beekman B, Onderwater RCA, van der Vijgh WJF, Bast A. Modulation of the in vitro cardiotoxicity of doxorubicin by flavonoids. Cancer Chemother Pharmacol. 1995;37:55–62.

    Article  PubMed  Google Scholar 

  • Jain D. Cardiotoxicity of doxorubicin and other anthracycline derivatives. J Nucl Cardiol. 2000;7:53–62.

    Article  CAS  PubMed  Google Scholar 

  • Lefrak EA, Pitha J, Rosenheim S, Gotlieb JA. A clinicopathologic analysis of doxorubicin cardiotoxicity. Cancer. 1973;32:301–14.

    Article  Google Scholar 

  • Minotti G. Adriamycin-dependent release of iron from microsomal membranes. Arch Biochem Biophys. 1989;268:298–403.

    Article  Google Scholar 

  • Olson RD, Mushlin PS. Doxorubicin cardiotoxicity: analysis of the most prevailing hypotheses. FASEB J. 1990;4:3076–86.

    CAS  PubMed  Google Scholar 

  • Olson RD, Boerth RC, Gerber JG, Nies AS. Mechanism of adriamycin cardiotoxicity: evidence for oxidative stress. Life Sci. 1981;29:1393–401.

    Article  CAS  PubMed  Google Scholar 

  • Pai VB, Nahata MC. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf. 2000;22:263–302.

    Article  CAS  PubMed  Google Scholar 

  • Perkins WE, Schroeder RL, Carrano RA, Imondi AR. Effect of ICRF-187 on doxorubicin-induced myocardial effects in the mouse and guinea pig. Br J Cancer. 1982;46:662–7.

    CAS  PubMed  Google Scholar 

  • Schroterova L, Kaiserova H, Baliharova V, Velik J, Gersl V, Kvasnickova E. The effect of new lipophilic chelators on the activities of cytosolic reductases and P450 cytochromes involved in the metabolism of anthracycline antibiotics: studies in vitro. Physiol Res. 2004;53:683–91.

    CAS  PubMed  Google Scholar 

  • Steinherz LJ, Steinherz PG, Tan CT, Heller G, Murphy ML. Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA. 1991;266:1672–7.

    Article  CAS  PubMed  Google Scholar 

  • Tietze F. Enzymatic method for quantitative determination of nanogram amounts of total and oxidixed glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969;27:502–22.

    Article  CAS  PubMed  Google Scholar 

  • van Acker FAA, van Acker SABE, Haenen GRMM, Bast A, van der Vijgh WJF. in vitro screening of antitumour agents for cardiotoxicity by means of isolated mouse left atria. Anticancer Res. 2000;20:4483–8.

    PubMed  Google Scholar 

  • van Acker SABE, Voest EE, Beems DB, et al. Cardioprotective properties of O-(beta-hydroxyethyl)-rutosides in doxorubicin-pretreated BALB/c mice. Cancer Res. 1993;53:4603–7.

    PubMed  Google Scholar 

  • van Acker SABE, Kramer K, Grimbergen JA, van den Berg D-J, van der Vijgh WJF, Bast A. Monohydroxyethylrutoside as protector against chronic doxorubicin-induced cardiotoxicity. Br J Pharmacol. 1995;115:1260–4.

    PubMed  Google Scholar 

  • van Acker SABE, van den Berg D-J, Tromp MNJL, et al. Structural aspects of antioxidant activity of flavonoids. Free Radic Biol Med. 1996;20:331–42.

    Article  PubMed  Google Scholar 

  • van Acker SABE, Boven E, Kuiper K, et al. Monohydroxyethylrutoside, a dose dependent cardioprotective agent, does not affect the antitumor activity of doxorubicin. Clin Cancer Res. 1997;3:1747–54.

    PubMed  Google Scholar 

  • van Acker SABE, Plemper van Balen G, van den Berg D-J, Bast A, van der Vijgh WJF. Influence of iron chelation on the antioxidant activity of flavonoids. Biochem Pharmacol. 1998;56:935–43.

    Article  PubMed  Google Scholar 

  • Voest EE, van Acker SABE, van der Vijgh WJF, van Asbeck BS, Bast A. Comparison of different iron chelators as protective agents against acute doxorubicin-induced cardiotoxicity. J Mol Cell Cardiol. 1994;26:1179–85.

    Article  CAS  PubMed  Google Scholar 

  • Willems AM, Bruynzeel AM, Kedde MA, van Groeningen CJ, Bast A, van der Vijgh WJF. A phase I study of monohydroxyethylrutoside in healthy volunteers. Cancer Chemother Pharmacol. 2006;57:678–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bast.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bast, A., Kaiserová, H., den Hartog, G.J.M. et al. Protectors against doxorubicin-induced cardiotoxicity: Flavonoids. Cell Biol Toxicol 23, 39–47 (2007). https://doi.org/10.1007/s10565-006-0139-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-006-0139-4

Keywords

Navigation