Skip to main content

Advertisement

Log in

Breast cancer-derived M543V mutation in helix 12 of estrogen receptor α inverts response to estrogen and SERMs

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

We have isolated from human breast cancers several mutations in the Helix 12 component of activation function 2 (AF-2) in the estrogen receptor alpha (ERα). We used a novel approach to detect changes in the hormone-binding domain of ERα, based on the evidence that antiestrogens, such as 4-hydroxytamoxifen (ZOHT) and ICI 182,780, block the function of ERα by binding and folding the AF-2 transcriptional domain in a way that inhibits its association with coactivator proteins. We have identified a Helix 12 mutation, M543V, which leads to greater ERα transcription with ZOHT and other antiestrogens (including 1,1-dichloro-2,2,3-triarylcyclopropanes, DTACs) than with 17-β estradiol (E2). We also found an independent mutation at the same position, M543I, which did not show this inverted ligand phenotype. In comparison to further Helix 12 mutations made in vitro, it appears that relative hydrophobicity of the amino acid side chains on the inner face of Helix 12 is key to maintaining the transcriptionally active, agonist conformation with bound E2. This active conformation can be induced, resulting in increased transcription, by adding excess p160 coactivator AIB1 in transcriptional assays with E2-bound receptors, while the ZOHT-bound receptors were not further activated by AIB1. Other experiments show that the cross talk between ERα and AP-1 protein from AP-1-binding sites is not dependent on Helix 12 integrity. We show that two alleles containing a proline substitution in Helix 12 that inactivate AF-2 function of ERα at EREs have little negative effect on function through AP-1 elements, supporting a prominent role for the N-terminal AF-1 of ERα in AP-1/ERα transcriptional cross talk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Smith CL, O’Malley BW (2004) Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev 25:45–71

    Article  CAS  PubMed  Google Scholar 

  2. Savkur RS, Bramlett KS, Clawson D, Burris TP (2004) Pharmacology of nuclear receptor-coregulator recognition. Vitam Horm 68:145–183

    Article  CAS  PubMed  Google Scholar 

  3. Savkur RS, Burris TP (2004) The coactivator LXXLL nuclear receptor recognition motif. J Pept Res 63:207–212

    Article  CAS  PubMed  Google Scholar 

  4. Feng W, Ribeiro RCJ, Wagner RL, Nguyen H, Apriletti JW, Fletterick RJ, Baxter JD, Kushner PJ, West BL (1998) Hormone-dependent coactivator binding to a hydrophobic cleft on nuclear receptors. Science 280:1747–1749

    Article  CAS  PubMed  Google Scholar 

  5. Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95:927–937

    Article  CAS  PubMed  Google Scholar 

  6. Brzozowski AM, Pike ACW, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene GL, Gustafsson J-Å, Carlquist M (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389:753–758

    Article  CAS  PubMed  Google Scholar 

  7. Vajdos FF, Hoth LR, Geoghegan KF, Simons SP, LeMotte PK, Danley DE, Ammirati MJ, Pandit J (2007) The 2.0 Å crystal structure of the ERα ligand-binding domain complexed with lasofoxifene. Protein Sci 16(89):7–905

    Google Scholar 

  8. Pike AC, Brzozowski AM, Walton J, Hubbard RE, Thorsell AG, Li YL, Gustafsson J-Å, Carlquist M (2001) Structural insights into the mode of action of a pure antiestrogen. Structure 9:145–153

    Article  CAS  PubMed  Google Scholar 

  9. Wu YL, Yang X, Ren Z, McDonnell DP, Norris JD, Willson TM, Greene GL (2005) Structural basis for an unexpected mode of SERM-mediated ER antagonism. Mol Cell 18:413–424

    Article  CAS  PubMed  Google Scholar 

  10. Padron A, Li L, Kofoed EM, Schaufele F (2007) Ligand-selective interdomain conformations of estrogen receptor-alpha. Mol Endocrinol 21:49–61

    Article  CAS  PubMed  Google Scholar 

  11. Cheng P, Kanterewicz B, Hershberger PA, McCarty KS Jr, Day BW, Nichols M (2004) Inhibition of ER alpha-mediated transcription by antiestrogenic 1, 1-dichloro-2, 2, 3-triarylcyclopropanes. Mol Pharmacol 66:970–977

    Article  CAS  PubMed  Google Scholar 

  12. Nichols M, McCarty KS Jr (2002) Functional mutations of estrogen receptor protein: assay for detection. Breast Cancer Res Treat 72:61–68

    Article  CAS  PubMed  Google Scholar 

  13. Nichols M, Rientjes JMJ, Stewart AF (1998) Different positioning of the ligand binding domain helix 12 and the F domain of the estrogen receptor accounts for functional differences between agonists and antagonists. EMBO J 17:765–773

    Article  CAS  PubMed  Google Scholar 

  14. Feil R, Wagner J, Metzger D, Chambon P (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237:752–757

    Article  CAS  PubMed  Google Scholar 

  15. Nawaz Z, Lonard DM, Dennis AP, Smith CL, O’Malley BW (1999) Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci USA 96:1858–1862

    Article  CAS  PubMed  Google Scholar 

  16. Lonard DM, Nawaz Z, Smith CL, O’Malley BW (2000) The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptor-alpha transactivation. Mol Cell 5:939–948

    Article  CAS  PubMed  Google Scholar 

  17. Long X, Nephew KP (2006) Fulvestrant (ICI 182, 780)-dependent interacting proteins mediate immobilization and degradation of estrogen receptor-alpha. J Biol Chem 281:9607–9615

    Article  CAS  PubMed  Google Scholar 

  18. Hoffmann J, Bohlmann R, Heinrich N, Hofmeister H, Kroll J, Kunzer H, Lichtner RB, Nishino Y, Parczyk K, Sauer G, Gieschen H, Ulbrich HF, Schneider MR (2004) Characterization of new estrogen receptor destabilizing compounds: effects on estrogen-sensitive and tamoxifen-resistant breast cancer. J Natl Cancer Inst 96:210–218

    Article  CAS  PubMed  Google Scholar 

  19. Fan M, Nakshatri H, Nephew KP (2004) Inhibiting proteasomal proteolysis sustains estrogen receptor-α activation. Mol Endocrinol 18:2603–2615

    Article  CAS  PubMed  Google Scholar 

  20. Jakacka M, Ito M, Weiss J, Chien PY, Gehm BD, Jameson JL (2001) Estrogen receptor binding to DNA is not required for its activity through the nonclassical AP1 pathway. J Biol Chem 276:13615–13621

    CAS  PubMed  Google Scholar 

  21. Saville B, Wormke M, Wang F, Nguyen T, Enmark E, Kuiper G, Gustafsson J-Å, Safe S (2000) Ligand-, cell-, and estrogen receptor subtype (alpha/beta)-dependent activation at GC-rich (Sp1) promoter elements. J Biol Chem 275:5379–5387

    Article  CAS  PubMed  Google Scholar 

  22. Safe S (2001) Transcriptional activation of genes by 17β–estradiol through estrogen receptor-Sp1 interactions. Vitam Horm 62:231–252

    Article  CAS  PubMed  Google Scholar 

  23. Paech K, Webb P, Kuiper GGJM, Nilsson S, Gustafsson J-Å, Kushner PJ, Scanlan TS (1997) Differential ligand activation of estrogen receptors ERα and ERβ at AP1 sites. Science 277:1508–1510

    Article  CAS  PubMed  Google Scholar 

  24. Miller WR, Bartlett JM, Canney P, Verrill M (2007) Hormonal therapy for postmenopausal breast cancer: the science of sequencing. Breast Cancer Res Treat 103:149–160

    Article  CAS  PubMed  Google Scholar 

  25. Jordan VC, O’Malley BW (2007) Selective estrogen-receptor modulators and antihormonal resistance in breast cancer. J Clin Oncol 25:5815–5824

    Article  CAS  PubMed  Google Scholar 

  26. Veldscholte J, Berrevoets CA, Ris-Stalpers C, Kuiper GG, Jenster G, Trapman J, Brinkmann AO, Mulder E (1992) The androgen receptor in LNCaP cells contains a mutation in the ligand binding domain which affects steroid binding characteristics and response to antiandrogens. J Steroid Biochem Mol Biol 41:665–669

    Article  CAS  PubMed  Google Scholar 

  27. Shao W, Keeton EK, McDonnell DP, Brown M (2004) Coactivator AIB1 links estrogen receptor transcriptional activity and stability. Proc Natl Acad Sci USA 101:11599–11604

    Article  CAS  PubMed  Google Scholar 

  28. Laios I, Journe F, Laurent G, Nonclercq D, Toillon RA, Seo HS, Leclercq G (2003) Mechanisms governing the accumulation of estrogen receptor alpha in MCF-7 breast cancer cells treated with hydroxytamoxifen and related antiestrogens. J Steroid Biochem Mol Biol 87:207–221

    Article  CAS  PubMed  Google Scholar 

  29. Wijayaratne AL, McDonnell DP (2001) The human estrogen receptor-alpha is a ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and selective estrogen receptor modulators. J Biol Chem 276:35684–35692

    Article  CAS  PubMed  Google Scholar 

  30. Lupien M, Jeyakumar M, Hébert E, Hilmi K, Cotnoir-White D, Loch C, Auger A, Dayan G, Pinard GA, Wurtz JM, Moras D, Katzenellenbogen J, Mader S (2007) Raloxifene and ICI182, 780 increase estrogen receptor-α association with a nuclear compartment via overlapping sets of hydrophobic amino acids in activation function 2 helix 12. Mol Endocrinol 21:797–816

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Don DeFranco for comments and the ERE luciferase–reporter construct. This work was supported by the NIH grants CA87414, DK59516, Department of Defense Breast Cancer Program grant (DAMD17-01-1-0378) and the State of Pennsylvania Breast Cancer Coalition Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Nichols.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nichols, M., Cheng, P., Liu, Y. et al. Breast cancer-derived M543V mutation in helix 12 of estrogen receptor α inverts response to estrogen and SERMs. Breast Cancer Res Treat 120, 761–768 (2010). https://doi.org/10.1007/s10549-009-0437-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0437-7

Keywords

Navigation