Skip to main content
Log in

Incorporation of zinc into the coccoliths of the microalga Emiliania huxleyi

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The coccolithophore Emiliania huxleyi is covered with elaborated calcite plates, the so-called coccoliths, which are produced inside the cells. We investigated the incorporation of zinc into the coccoliths of E. huxleyi by applying different zinc and calcium amounts via the culture media and subsequently analyzing the zinc content in the cells and the Zn/Ca ratio of the coccoliths. To investigate the Zn/Ca ratio of coccoliths built in the manipulated media, the algae have first to be decalcified, i.e. coccolith free. We used a newly developed decalcification method to obtain ‘naked’ cells for cultivation. E. huxleyi proliferated and produced new coccoliths in all media with manipulated Zn/Ca ratios. The cells and the newly built coccoliths were investigated regarding their zinc content and their Zn/Ca ratio, respectively. High zinc amounts were taken up by the algae. The Zn/Ca ratio of the coccoliths was positively correlated to the Zn/Ca ratio of the applied media. The unique feature of the coccoliths was maintained also at high Zn/Ca ratios. We suggest the following pathway of the zinc ions into the coccoliths: first, the zinc ions are bound to the cell surface, followed by their transportation into the cytoplasm. Obviously, the zinc ions are removed afterwards into the coccolith vesicle, where the zinc is incorporated into the calcite coccoliths which are then extruded. The incorporation of toxic zinc ions into the coccoliths possibly due to a new function of the coccoliths as detoxification sites is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aristilde L, Xu Y, Morel FMM (2012) Weak organic ligands enhance zinc uptake in marine phytoplankton. Environ Sci Technol 46:5438–5445. doi:10.1021/es300335u

    Article  CAS  PubMed  Google Scholar 

  • Berges JA, Franklin DJ, Harrison PJ (2001) Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the past two decades. J Phycol 37:1138–1145

    Article  Google Scholar 

  • Corstjens PLAM, van der Kooij A, Linschooten C, Brouwers G-J, Westbroek P, Jong EW (1998) GPA, a calcium-binding protein in the coccolithophorid Emiliania huxleyi (Prymnesiophyceae). J Phycol 34:622–630

    Article  CAS  Google Scholar 

  • Crist DR, Crist RH, Martin JR, Watson JR (1994) Ion exchange systems in proton-metal reactions with algal cell walls. FEMS Microbiol Rev 14:309–314

    Article  CAS  Google Scholar 

  • Dupont CL, Ahner BA (2005) Effects of copper, cadmium, and zinc on the production and exudation of thiols by Emiliania huxleyi. Limnol Oceanogr 50(2):508–515

    Article  CAS  Google Scholar 

  • Ellwood MJ, Hunter KA (2000) The incorporation of zinc and iron into the frustule of the marine diatom Thalassiosira pseudonana. Limnol Oceanogr 45(7):1517–1524

    Article  CAS  Google Scholar 

  • Fisher NS, Bohé M, Teyssié J-L (1984) Accumulation and toxicity of Cd, Zn, Ag and Hg in four marine phytoplankters. Mar Ecol Prog Ser 18:201–213

    Article  CAS  Google Scholar 

  • Garnham GW, Codd GA, Gadd GM (1992) Kinetics of uptake and intracellular location of cobalt, manganese and zinc in the estuarine green alga Chlorella salina. Appl Microbiol Biotechnol 37:270–276

    CAS  Google Scholar 

  • Gussone N, Langer G, Thoms S, Nehrke G, Eisenhauer A, Riebesell U, Wefer G (2006) Cellular calcium pathways and isotope fractionation in Emiliania huxleyi. Geology 34(8):625–628. doi:10.1130/G22733.1

    Article  CAS  Google Scholar 

  • Henriksen K, Young JR, Bown PR, Stipp SLS (2004) Coccolith biomineralisation studied with atomic force microscopy. Palaeontology 47(3):725–743

    Article  Google Scholar 

  • Herfort L, Loste E, Meldrum F, Thake B (2004) Structural and physiological effects of calcium and magnesium in Emiliania huxleyi (Lohmann) Hay and Mohler. J Struct Biol 148:307–314. doi:10.1016/j.jsb.2004.07.005

    Article  CAS  PubMed  Google Scholar 

  • Jaccard T, Ariztegui D, Wilkinson KJ (2009) Incorporation of zinc into the frustule of the freshwater diatom Stephanodiscus hantzschii. Chem Geol 265:381–386

    Article  CAS  Google Scholar 

  • Jensen TE, Rachlin JW, Jani V, Warkentine B (1982) An X-Ray energy dispersive study of cellular compartmentalization of lead and zinc in Chlorella saccharophila (Chlorophyta), Navicula incerta and Nitzschia closterium (Bacillariophyta). EEB 22(3):319–328. doi:10.1016/0098-8472(82)90024-7

    Article  CAS  Google Scholar 

  • Kawakami SK, Gledhill M, Achterberg EP (2006) Production of phytochelatins and glutathione by marine phytoplankton in response to metal stress. J Phycol 42:975–989

    Article  CAS  Google Scholar 

  • Knauer K, Behra R, Sigg L (1997) Adsorption and uptake of copper by the green alga Scenedesmus subspicatus (Chlorophyta). J Phycol 33:596–601

    Article  CAS  Google Scholar 

  • Kumar R, Goyal D (2010) Waste water treatment and metal (Pb2+, Zn2+) removal by microalgal based stabilization pond system. IJMM 50:34–40. doi:10.1007/s12088-010-0063-4

    Google Scholar 

  • Langer G, Gussone N, Nehrke G, Riebesell U, Eisenhauer A, Kuhnert H, Rost B, Trimborn S, Thoms S (2006) Coccolith strontium to calcium ratios in Emiliania huxleyi: the dependence on seawater strontium and calcium concentrations. Limnol Oceanogr 51(1):310–320

    Article  CAS  Google Scholar 

  • Langer G, Nehrke G, Thoms S, Stoll H (2009) Barium partioning in coccoliths of Emiliania huxleyi. Geochim Cosmochim 73:2899–2906. doi:10.1016/j.gca.2009.02.025

    Article  CAS  Google Scholar 

  • Machill S, Köhler L, Ueberlein S, Hedrich R, Kunaschk M, Paasch S, Schulze R, Brunner E (2013) Analytical studies on the incorporation of aluminum in the cell walls of the marine diatom Stephanopyxis turri. Biometals 26:141–150. doi:10.1007/s10534-012-9601-3

    Article  CAS  PubMed  Google Scholar 

  • Mackinder L, Wheeler G, Schroeder D, Riebesell U, Brownlee C (2010) Molecular mechanisms underlying calcification in coccolithophores. Geomicrobiol J 27:585–595. doi:10.1080/01490451003703014

    Article  CAS  Google Scholar 

  • Monteiro CM, Fonseca SC, Castro PM, Malcata FX (2011) Toxicity of cadmium and zinc on two microalgae, Scenedesmus obliquus and Desmodesmus pleiomorphus, from Northern Portugal. J Appl Phycol 23:97–103

    Article  CAS  Google Scholar 

  • Müller MN, Kisakürek B, Buhl D, Gutperlet R, Kolevica A, Riebesell U, Stoll H, Eisenhauer A (2011) Response of the cocolithophores Emiliania huxleyi and Coccolithus braarudii to changing seawater Mg2+ and Ca2+ concentrations: Mg/Ca, Sr/Ca ratios and δ44/40Ca, δ26/24Mg of coccolith calcite. Geochim Gosmochim 75:2088–2102. doi:10.1016/j.gca.2011.01.035

    Article  Google Scholar 

  • Paasche E (2002) A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 40(6):503–529

    Article  Google Scholar 

  • Perales-Vela HV, Peña-Castro JM, Cañizares-Villanueva RO (2006) Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64:1–10

    Article  CAS  PubMed  Google Scholar 

  • Rai LC (2001) Heavy metal tolerance in algae. In: Gaur JP (ed) Algal adaptation to environmental stresses, vol 1. Springer, Heidelberg, pp 363–388

    Chapter  Google Scholar 

  • Rickaby REM, Schrag DP, Zondervan I, Riebesell U (2002) Growth rate dependence of Sr incorporation during calcification of Emiliania huxleyi. Glob Biogeochem Cycles 16(1):6-1–6-7

    Article  Google Scholar 

  • Rost B, Riebesell U (2004) Coccolithophores and the biological pump: response to environmental changes. In: Thierstein HR, Young JR (eds) Coccolithophores: from molecular processes to global impact. Springer, Berlin, pp 99–125

    Chapter  Google Scholar 

  • Santomauro G, Srot V, Bussmann B, van Aken PA, Brümmer F, Strunk HP, Bill J (2012) Biomineralization of zinc-phosphate-based nano needles by living Microalgae. JBNB 3(3):362–370

    Article  CAS  Google Scholar 

  • Stoll H, Langer G, Shimizu N, Kanamaru K (2012) B/Ca in coccoliths and relationship to calcification vesicle pH and dissolved inorganic carbon concentrations. Geochim Gosmochim Acta 80:143–157. doi:10.1016/j.ga.2011.12.003

    Article  CAS  Google Scholar 

  • Sunda WG (2012) Feedback interactions between trace metal nutrients and phytoplankton in the ocean. Front Microbiol 3:1–22. doi:10.3398/fmicb.2012.00204

    Google Scholar 

  • Sunda WG, Huntsman SA (1992) Feedback interactions between zinc and phytoplankton in seawater. Limnol Oceanogr 37(1):25–40

    Article  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (1995) Cobalt and zinc interreplacement in the marine phytoplankton: biological and geochemical implications. Limnol Oceanogr 40(8):1404–1417

    Article  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (1998) Processes regulating cellular metal accumulation and physiological effects: phytoplankton as model systems. Sci Total Environ 219:165–181

    Article  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (2005) Effect of CO2 supply and demand on zinc uptake and growth limitation in a coastal diatom. Limnol Oceanogr 50(4):1181–1192

    Article  CAS  Google Scholar 

  • Ting YP, Lawson F, Prince IG (1989) Uptake of cadmium and zinc by the alga Chlorella vulgaris: part 1. Individual ion species. Biotechnol Bioeng 34:990–999

    Article  CAS  PubMed  Google Scholar 

  • Van der Wal P, De Jong EW, Westbroek P, de Bruijn WC, Muider-Stapel AA (1983) Ultra structural polysaccharide localization in calcifying and naked cells of the coccolithophorid Emiliania huxleyi. Protoplasma 188:157–168

    Google Scholar 

  • Weiner S, Dove PM (2003) An overview of biomineralization processes and the problem of the vital effect. Rev Miner Geochem 54:1–29

    Article  CAS  Google Scholar 

  • Westbroek P, de Jong EW, van der Wal P, Borman AH, de Vrind JPM, Kok D, de Bruijn WC, Parker SB (1984) Mechanism of calcification in the marine alga Emiliania huxleyi. Phil Trans R Soc Lond B 304:435–444

    Article  CAS  Google Scholar 

  • Wong SL, Nakamoto L, Wainwright JF (1994) Identification of toxic metals in affected algal cells in assays of wastewaters. J Appl Phycol 6:405–414. doi:10.1007/BF02182157

    Article  CAS  Google Scholar 

  • Wurl O, Obbard JP (2004) A review of pollutants in the sea-surface microlayer (SML): a unique habitat for marine organisms. Mar Pollut Bull 48:1016–1030

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Tang D, Shaked Y, Morel FMM (2007) Zinc, cadmium, and cobalt interreplacement and relative use efficiencies in the coccolithophore Emiliania huxleyi. Limnol Oceanogr 52(5):2294–2305

    Article  CAS  Google Scholar 

  • Xu Y, Shi D, Aristilde L, Morel FMM (2012) The effect of pH on the uptake of zinc and cadmium in marine phytoplankton: possible role of weak complexes. Limnol Oceanogr 57(1):293–304

    CAS  Google Scholar 

  • Young JR (1987) Possible functional interpretations of coccolith morphology. Abh Geol 39:305–313

    Google Scholar 

  • Young JR, Henriksen K (2003) Biomineralization within vesicles: the calcite of coccoliths. In: Dove PM, De Yoreo JJ, Weiner S (eds.) Biomineralization. Rev Miner Geochem 54:189–215

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for financial support provided by the Deutsche Forschungsgemeinschaft (BI 469/15-1) within the scope of the project “Biologische Erzeugung von Oxidkeramiken” (PAK 410). The authors thank F. Predel (MPI-IS) for SEM measurements, Prof. Dr. P. A. Van Aken (MPI-IS) is thanked for providing the SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Santomauro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santomauro, G., Sun, WL., Brümmer, F. et al. Incorporation of zinc into the coccoliths of the microalga Emiliania huxleyi . Biometals 29, 225–234 (2016). https://doi.org/10.1007/s10534-015-9908-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-015-9908-y

Keywords

Navigation