Skip to main content
Log in

Genetic engineering of millets: current status and future prospects

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

This review summarizes progress on the genetic transformation of millets and discusses the future prospects for the development of improved varieties. Only a limited number of studies have been carried out on genetic improvement of millets despite their nutritional importance in supplying minerals, calories and protein. Most genetic transformation studies of millets have been restricted to pearl millet and bahiagrass and most studies have been limited to the assessment of reporter and marker gene expression. Biolistic-mediated gene delivery has been frequently used for the transformation of millets but Agrobacterium-mediated transformation is still lagging. Improved transformation of millets, allied to relevant gene targets which may offer, for example, improved nutritional quality, resistance to abiotic and biotic stresses, and resistance to fungal infection will play important roles in millet improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altpeter F, James VA (2005) Genetic transformation of turftype bahiagrass (Paspalum notatum Flugge) by biolistic gene transfer. Int Turfgrass Soc Res J 10:1–5

    Google Scholar 

  • Arockiasamy S, Ignacimuthu S (2007) Regeneration of transgenic plants from two indica rice (Oryza sativa L.) cultivars using shoot apex explants. Plant Cell Rep 26:1745–1753

    Article  PubMed  CAS  Google Scholar 

  • Bajaj S, Mohanty A (2005) Recent advances in rice biotechnology-towards genetically superior transgenic rice. Plant Biotechnol J 3:275–307

    Article  PubMed  CAS  Google Scholar 

  • Borlaug NE (2002) Feeding a world of 10 billion people: the miracle ahead. In Vitro Cell Dev Biol Plant 8:221–228

    Google Scholar 

  • Ceasar SA, Ignacimuthu S (2008) Efficient somatic embryogenesis and plant regeneration from shoot apex explants of different Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn.). In Vitro Cell Dev Biol Plant 44:427–435

    Article  CAS  Google Scholar 

  • Cheng M, Lowe BA, Spencer TM, Ye X, Armstrong CL (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev Biol Plant 40:31–45

    Article  Google Scholar 

  • Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7:25–33

    Article  CAS  Google Scholar 

  • Devi P, Sticklen M (2002) Culturing shoot-tip clumps of pearl millet [Pennisetum glaucum (L.) R. Br.] and optimal microprojectile bombardment parameters for transient expression. Euphytica 125:45–50

    Article  CAS  Google Scholar 

  • Ding L, Li S, Gao J, Wang Y, Yang G, He G (2007) Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat. Mol Biol Rep. doi:10.1007/s11033-007-9148-5

  • Fang FQ, Qian Z, Guang MA, Jing JY (2007) Co-suppression of Si401, a maize pollen speciWc Zm401 homologous gene, results in aberrant anther development in foxtail millet. Euphytica 163:103–111

    Google Scholar 

  • Girgi M, O’Kennedy MM, Morgenstern A, Smith G, Lorz H, Oldach KH (2002) Transgenic and herbicide resistant pearl millet (Pennisetum glaucum L.) R.Br. via microprojectile bombardment of scutellar tissue. Mol Breed 10:243–252

    Article  CAS  Google Scholar 

  • Girgi M, Breese WA, Lorz H, Oldach KH (2006) Rust and downy mildew resistance in pearl millet (Pennisetum glaucum) mediated by heterologous expression of the afp gene from Aspergillus giganteus. Transgenic Res 15:313–324

    Article  PubMed  CAS  Google Scholar 

  • Goldman JJ, Hanna WW, Fleming G, Ozias-Akins P (2003) Fertile transgenic pearl millet [Pennisetum glaucum (L.) R. Br.] plants recovered through microprojectile bombardment and phosphinothricin selection of apical meristem-, inflorescence-, and immature embryo-derived embryogenic tissues. Plant Cell Rep 21:999–1009

    Article  PubMed  CAS  Google Scholar 

  • Gondo T, Ishii Y, Akashi R, Kawamura O (2003) Efficient induction of embryogenic callus from mature seeds of bahiagrass (Paspalum notatum Flügge) and conditions for genetic transformation by particle bombardment. Grassl Sci 49:33–37

    CAS  Google Scholar 

  • Gondo T, Shin-ichi T, Ryo A, Osamu K, Franz H (2005) Green, herbicide-resistant plants by particle inflow gun-mediated gene transfer to diploid bahiagrass (Paspalum notatum). J Plant Physiol 16:1367–1375

    Article  Google Scholar 

  • Grando MF, Franklin CI, Shatters JRG (2002) Optimizing embryogenic callus production and plant regeneration from ‘Tifton 9’ bahiagrass seed explants for genetic manipulation. Plant Cell Tissue Organ Cult 71:213–222

    Article  CAS  Google Scholar 

  • Gupta P, Raghuvanshi S, Tyagi AK (2001) Assessment of the efficiency of various gene promoters via biolistics in leaf and regenerating seed callus of millets, Eleusine coracana and Echinochloa crusgalli. Plant Biotechnol 18:275–282

    CAS  Google Scholar 

  • Hangning Z, Paula L, Fredy A (2007) Improved turf quality of transgenic bahiagrass (Paspalum notatum Flugge) constitutively expressing the ATHB16 gene, a repressor of cell expansion. Mol Breed 20:415–423

    Article  Google Scholar 

  • Hauptmann RM, Ozias-Akins P, Vasil V, Tabaeizadeh Z, Rogers SG, Horsch RB, Vasil I, Fraley RT (1987) Transient expression of eletroporated DNA in monocotyledonous and dicotyledonous species. Plant Cell Rep 6:265–270

    Article  CAS  Google Scholar 

  • Hauptmann RM, Vasil V, Ozias-Akins P, Tabaezadh Z, Rogers SG, Fraley RT, Horsch RB, Vasil IK (1988) Evaluation of selectable markers for obtaining stable transformants in the Gramineae. Plant Physiol 86:602–606

    Article  PubMed  CAS  Google Scholar 

  • Ignacimuthu S, Arockiasamy S (2006) Agrobacterium-mediated transformation of an elite indica rice for insect resistance. Curr Sci 90:829–835

    CAS  Google Scholar 

  • Ignacimuthu S, Arockiasamy S, Terada R (2000) Genetic transformation of rice: current status and future prospects. Curr Sci 79:186–195

    Google Scholar 

  • James VA, Neibaur JI, Altpeter F (2008) Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance. Transgenic Res 17:93–104

    Article  PubMed  CAS  Google Scholar 

  • Jones HD, Doherty A, Wu H (2005) Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat. Plant Methods 1:5–13

    Article  PubMed  Google Scholar 

  • Kalpana K, Maruthasalam S, Rajesh T, Poovannan K, Kumar KK, Kokiladevi E, Raja JAJ, Sudhakar D, Velazhahan R, Samiyappan R, Balasubramanian P (2006) Engineering sheath blight resistance in elite indica rice cultivars using genes encoding defense proteins. Plant Sci 170:203–215

    Article  CAS  Google Scholar 

  • Kohli A, Gahakwa D, Vain P, Laurie DA, Christou P (1999) Transgene expression in rice engineered through particle bombardment: molecular factors controlling stable expression and transgene silencing. Planta 208:88–97

    Article  CAS  Google Scholar 

  • Kothari SL, Kumar S, Vishnoi RK, Kothari SL, Watanabe KN (2005) Applications of biotechnology for improvement of millet crops: review of progress and future prospects. Plant Biotechnol 22:81–88

    CAS  Google Scholar 

  • Kumar KK, Poovannan K, Nandakumar R, Thamilarasi K, Geetha C, Jayashree N, Kokiladevi E, Raja JAJ, Samiyappan R, Sudhakar D, Balasubramanian P (2003) A high throughput functional expression assay system for a defence gene conferring transgenic resistance on rice against the sheath blight pathogen, Rhizoctonia solani. Plant Sci 165:969–976

    Article  CAS  Google Scholar 

  • Kumar KK, Maruthasalam S, Loganathan MD, Sudhakar D, Balasubramanian P (2005) An improved Agrobacterium-mediated transformation protocol for recalcitrant elite indica rice cultivars. Plant Mol Biol Rep 23:67–73

    Article  CAS  Google Scholar 

  • Lambe P, Dinant M, Matagne RF (1995) Differential long-term expression and methylation of the hygromycin phosphotransferase (hph) and b-glucuronidase (GUS) genes in transgenic pearl millet (Pennisetum americanum) callus. Plant Sci 108:51–62

    Article  CAS  Google Scholar 

  • Lambe P, Dinant M, Deltour R (2000) Transgenic pearl millet (Pennisetum glaucum). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, transgenic crops I, vol 46. Springer, Berlin, pp 84–108

    Google Scholar 

  • Latha MA, Venkateswara Rao K, Dashavantha Reddy V (2005) Production of transgenic plants resistant to leaf blast disease in finger millet (Eleusine coracana (L.) Gaertn.). Plant Sci 169:657–667

    Article  CAS  Google Scholar 

  • Latha MA, Rao KV, Reddy TP, Reddy VD (2006) Development of transgenic pearl millet (Pennisetum glaucum (L.) R. Br.) plants resistant to downy mildew. Plant Cell Rep 25:927–935

    Article  PubMed  CAS  Google Scholar 

  • Liu YH, Yu JJ, Zhao Q, Ao GM (2005) Genetic transformation of millet (Setaria italica) by Agrobacterium-mediated. Agric Biotechnol J 13:32–37

    Article  CAS  Google Scholar 

  • Maruthasalam S, Kalpana K, Kumar KK, Loganathan M, Poovannan K, Raja JAT, Kokiladevi E, Samiyappan R, Sudhakar D, Balasubramanian P (2007) Pyramiding transgenic resistance in elite indica rice cultivars against the sheath blight and bacterial blight. Plant Cell Rep 26:791–804

    Article  PubMed  CAS  Google Scholar 

  • McCormac AC, Wu H, Bao M, Wang Y, Xu R, Elliott MCD, Chen DF (1998) The use of visual marker genes as cellspecific reporters of Agrobacterium-mediated T-DNA delivery to wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Euphytica 99:17–25

    Article  CAS  Google Scholar 

  • O’Kennedy MM, Burger JT, Botha FC (2004) Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase. Plant Cell Rep 22:684–690

    Article  PubMed  Google Scholar 

  • O’Kennedy MM, Grootboom A, Shewry PR (2006) Harnessing sorghum and millet biotechnology for food and health. J Cereal Sci 44:224–235

    Article  Google Scholar 

  • Opabode JT (2006) Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnol Mol Biol Rev 1:12–20

    Google Scholar 

  • Rachie KO, Majmudar JV (1980) Pearl millet. Pennsylvania State University Press, University Park, p 307

    Google Scholar 

  • Reed J, Privalle L, Powell ML, Meghji M, Dawson J, Dunder E, Suttie J, Wenck A, Launis K, Kramer C, Chang YF, Hansen G, Wright M (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell Dev Biol Plant 37:127–132

    CAS  Google Scholar 

  • Sharma KK, Ortiz R (2000) Program for the application of genetic transformation for crop improvement in the semi-arid tropics. In Vitro Cell Dev Biol Plant 36:83–92

    Article  Google Scholar 

  • Shrawat AK, Lörz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 4:575–603

    Article  PubMed  CAS  Google Scholar 

  • Smith RL, Grando MF, Li YY, Seib JC, Shatters RG (2002) Transformation of bahiagrass (Paspalum notatum Flugge). Plant Cell Rep 20:1017–1021

    Article  CAS  Google Scholar 

  • Sreenivasulu N, Miranda M, Prakash HS, Wobus U, Weschke W (2004) Transcriptome changes in foxtail millet genotypes at high salinity: identification and characterization of a PHGPX gene specifically upregulated by NaCl in a salt-tolerant line. J Plant Physiol 161:467–477

    Article  PubMed  CAS  Google Scholar 

  • Sticklena MB, Orabya HF (2005) Shoot apical meristem: a sustainable explant for genetic transformation of cereal crops. In vitro Cell Dev Biol Plant 41:187–200

    Article  Google Scholar 

  • Taylor MG, Vasil V, Vasil IK (1991) Histology of, and physical factors affecting, transient GUS expression in pearl millet (Pennisetum glaucum (L.) R. Br.) embryos following microprojectile bombardment. Plant Cell Rep 10:120–125

    Article  CAS  Google Scholar 

  • Taylor MG, Vasil V, Vasil IK (1993) Enhanced GUS gene expression in cereal/grass cell suspensions and immature embryos using the maize ubiquitin-based plasmid pAHC25. Plant Cell Rep 12:491–495

    CAS  Google Scholar 

  • Van der Valk P, Proveniers MCG, Pertijs JH, Lamers J, Van Dun CMP, Smeekens JCM (2004) Late heading of perennial ryegrass caused by introducing an Arabidopsis homeobox gene. Plant Breed 123:531–535

    Article  Google Scholar 

  • Vasil IK (2005) The story of transgenic cereals: the challenge, the debate, and the solution. In Vitro Cell Dev Biol Plant 41:577–583

    Article  Google Scholar 

  • Vasil IK (2008) A short history of plant biotechnology. Phytochem Rev 7:387–394

    Article  CAS  Google Scholar 

  • Veluthambi K, Gupta K, Sharma A (2003) The current status of plant transformation technologies. Curr Sci 84:368–380

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ignacimuthu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceasar, S.A., Ignacimuthu, S. Genetic engineering of millets: current status and future prospects. Biotechnol Lett 31, 779–788 (2009). https://doi.org/10.1007/s10529-009-9933-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-009-9933-4

Keywords

Navigation