Skip to main content
Log in

Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Dual biological control, of both insect pests and plant pathogens, has been reported for the fungal entomopathogens, Beauveria bassiana (Bals.-Criv.) Vuill. (Ascomycota: Hypocreales) and Lecanicillium spp. (Ascomycota: Hypocreales). However, the primary mechanisms of plant disease suppression are different for these fungi. Beauveria spp. produce an array of bioactive metabolites, and have been reported to limit growth of fungal plant pathogens in vitro. In plant assays, B. bassiana has been reported to reduce diseases caused by soilborne plant pathogens, such as Pythium, Rhizoctonia, and Fusarium. Evidence has accumulated that B. bassiana can endophytically colonize a wide array of plant species, both monocots and dicots. B. bassiana also induced systemic resistance when endophytically colonized cotton seedlings were challenged with a bacterial plant pathogen on foliage. Species of Lecanicillium are known to reduce disease caused by powdery mildew as well as various rust fungi. Endophytic colonization has been reported for Lecanicillium spp., and it has been suggested that induced systemic resistance may be active against powdery mildew. However, mycoparasitism is the primary mechanism employed by Lecanicillium spp. against plant pathogens. Comparisons of Beauveria and Lecanicillium are made with Trichoderma, a fungus used for biological control of plant pathogens and insects. For T. harzianum Rifai (Ascomycota: Hypocreales), it has been shown that some fungal traits that are important for insect pathogenicity are also involved in biocontrol of phytopathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed AS, Sánchez CP, Candela ME (2000) Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) to Phytophthora capsici using Trichoderma harzianum and its relation with capsidiol accumulation. Eur J Plant Pathol 106:817–824

    Article  Google Scholar 

  • Aidemark M, Andersson C-J, Rasmusson AG, Widell S (2009) Regulation of callose synthase activity in situ in alamethicin-permeabilized Arabidopsis and tobacco suspension cells. BMC Plant Biol 9:27 (in press)

    Google Scholar 

  • Allen DJ (1982) Verticillium lecanii on the bean rust fungus, Uromyces appendiculatus. Trans Br Mycol Soc 79:362–364

    Article  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TD (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Article  Google Scholar 

  • Askary H, Yarmand H (2007) Development of the entomopathogenic hyphomycete Lecanicillium muscarium (Hyphomycetes: Moniliales) on various hosts. Eur J Entomol 104:67–72

    Google Scholar 

  • Askary H, Benhamou N, Brodeur J (1997) Ultrastructural and cytochemical investigations of the antagonistic effect of Verticillium lecanii on cucumber powdery mildew. Phytopathology 87:359–368

    Article  CAS  PubMed  Google Scholar 

  • Askary H, Carrière Y, Bélanger RR, Brodeur J (1998) Pathogenicity of the fungus Verticillium lecanii to aphids and powdery mildew. Biocontrol Sci Technol 8:23–32

    Article  Google Scholar 

  • Bark YG, Lee DG, Kim YH, Kang SC (1996) Antibiotic properties of an entomopathogenic fungus, Beauveria bassiana, on Fusarium oxysporum and Botrytis cinerea. Korean J Plant Pathol 12:245–250

    Google Scholar 

  • Bélanger RR, Labbé C (2002) Control of powdery mildews without chemicals: prophylactic and biological alternatives for horticultural crops. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. American Phytopathological Society, St. Paul, pp 256–267

    Google Scholar 

  • Benhamou N (2004) Potential of the mycoparasite, Verticillium lecanii, to protect citrus fruit against Penicillium digitatum, the causal agent of green mold: a comparison with the effect of chitosan. Phytopathology 94:693–705

    Article  PubMed  Google Scholar 

  • Benhamou N, Brodeur J (2000) Evidence of antibiosis and induced host defense reaction in the interaction between Verticillium lecanii and Penicillium digitatum, the causal agent of green mold. Phytopathology 90:932–943

    Article  CAS  PubMed  Google Scholar 

  • Benhamou N, Brodeur J (2001) Pre-inoculation of Ri T-DNA transformed cucumber roots with the mycoparasite, Verticillium lecanii, induces host defense reactions against Pythium ultimum infection. Physiol Mol Plant Pathol 58:133–146

    Article  CAS  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Zachow C, Lottmann J, Götz M, Costa R, Smalla K (2005) Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahlia Kleb. Appl Environ Microbiol 71:4203–4213

    Article  CAS  PubMed  Google Scholar 

  • Bidochka MJ, Burke S, Ng L (1999) Extracellular hydrolytic enzymes in the fungal genus Verticillium: adaptations for pathogenesis. Can J Microbiol 45:856–864

    Article  CAS  Google Scholar 

  • Bills GF, Polishook JD (1991) Microfungi from Carpinus caroliniana. Can J Bot 69:1477–1482

    Article  Google Scholar 

  • Boucias DG, Pendland JC (1998) Principles of insect pathology. Kluwer Acad Pub, Boston

    Google Scholar 

  • Boucias DG, Mazet I, Pendland J, Hung SY (1995) Comparative analysis of the in vivo and in vitro metabolites produced by the entomopathogen Beauveria bassiana. Can J Bot 73(Suppl 1):S1092–S1099

    Article  CAS  Google Scholar 

  • Bruinsma M, Pang B, Mumm R, van Loon JJA, Dicke M (2009) Comparing induction at an early and late step in signal transduction mediating indirect defence in Brassica oleracea. J Exp Bot 60:2589–2599

    Article  CAS  PubMed  Google Scholar 

  • Clark MM, Gwinn KD, Ownley BH (2006) Biological control of Pythium myriotylum. Phytopathology 96:S25

    Google Scholar 

  • Conrath U, Beckers GJM, Flors B, García-Agustín P, Jakab G, Mauch F, Newman M-A, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Copping LG, Menn JJ (2000) Biopesticides: a review of their action, applications and efficacy. Pest Manag Sci 56:651–676

    Article  CAS  Google Scholar 

  • Crespo R, Pedrini N, Juárez MP, Dal Bello GM (2008) Volatile compounds released by the entomopathogenic fungus Beauveria bassiana. Microbiol Res 163:148–151

    Article  CAS  PubMed  Google Scholar 

  • Djonović S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant Microbe Interact 19:838–853

    Article  PubMed  CAS  Google Scholar 

  • Djonović S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889

    Article  PubMed  CAS  Google Scholar 

  • Dubos B (1987) Fungal antagonism in aerial agrobiocenoses. In: Chet I (ed) Innovative approaches to plant disease control. Wiley-Liss, New York, pp 107–135

    Google Scholar 

  • Elliot SL, Sabelis MW, Janssen A, van der Geest LPS, Beerling EAM, Fransen J (2000) Can plants use entomopathogens as bodyguards? Ecol Lett 3:228–235

    Article  Google Scholar 

  • Ernst M, Medgen KW, Wirsel SGR (2003) Endophytic fungal mutualists: seed borne Stagonospora spp. enhance reed biomass production in axenic microcosms. Mol Plant Microbe Interact 16:580–587

    Article  CAS  PubMed  Google Scholar 

  • Eyal J, Mabud MDA, Fischbein KL, Walter JF, Osborne LS, Landa Z (1994) Assessment of Beauveria bassiana Nov. EO-1 strain, which produces a red pigment for microbial control. Appl Biochem Biotechnol 44:65–80

    Article  CAS  Google Scholar 

  • Fenice M, Selbmann L, Zucconi L, Onofri S (1997) Production of extracellular enzymes by Antarctic fungal strains. Polar Biol 17:275–280

    Article  Google Scholar 

  • Flori P, Roberti R (1993) Treatment of onion bulbs with antagonistic fungi for the control of Fusarium oxysporum f. sp. cepae. Difesa delle Piante 16:5–12

    Google Scholar 

  • Fravel DR (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathology 26:75–91

    CAS  Google Scholar 

  • Fry WE (1982) Principles of plant disease management. Academic Press, New York

    Google Scholar 

  • Genthner FJ, Cripe GM, Crosby DJ (1994) Effect of Beauveria bassiana and its toxins on Mysidopsis bahia (Mysidacea). Arch Environ Contam Toxicol 26:90–94

    Article  CAS  Google Scholar 

  • Giménez C, Cabrera R, Reina M, González-Coloma M (2007) Fungal endophytes and their role in plant protection. Curr Org Chem 11:707–720

    Article  Google Scholar 

  • Goettel MS, Koike M, Kim JJ, Aiuchi D, Shinya R, Brodeur J (2008) Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. J Invertebr Pathol 98:256–261

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Vidal S, Lopez-Llorca LV, Jansson H-B, Salinas J (2006) Endophytic colonization of date palm (Phoenix dactylifera L.) leaves by entomopathogenic fungi. Micron 37:624–632

    Article  PubMed  Google Scholar 

  • Gómez-Vidal S, Salinas J, Tena M, Lopez-Llorca LV (2009) Proteomic analysis of date palm (Phoenix dactylifera L.) responses to endophytic colonization by entomopathogenic fungi. Electrophoresis 30:2996–3005

    Article  PubMed  CAS  Google Scholar 

  • Griffin MR (2007) Beauveria bassiana, a cotton endophyte with biocontrol activity against seedling disease. Ph.D. Dissertation, The University of Tennessee, Knoxville, TN, USA

  • Grove J, Pople M (1980) The insecticidal activity of beauvericin and the enniatin complex. Mycopathologia 70:103–105

    Article  Google Scholar 

  • Gupta S, Montllor C, Hwang Y-S (1995) Isolation of novel beauvericin analogues from the fungus Beauveria bassiana. J Nat Prod 58:733–738

    Article  CAS  Google Scholar 

  • Gutjahr C, Paszkowski U (2009) Weights in the balance: jasmonic acid and salicylic acid signaling in root-biotroph interactions. Mol Plant Microbe Interact 22:763–772

    Article  CAS  PubMed  Google Scholar 

  • Hajek AE (1997) Ecology of terrestrial fungal entomopathogens. Adv Microb Ecol 15:193–249

    Google Scholar 

  • Hall RA (1980) Laboratory infection of insects by Verticillium lecanii strains isolated from phytopathogenic fungi. Trans Br Mycol Soc 74:445–446

    Article  Google Scholar 

  • Hall RA (1981) The fungus Verticillium lecanii as a microbial insecticide against aphids and scales. In: Burges HD (ed) Microbial control of pests and plant diseases 1970–1980. Academic Press, London, pp 483–498

    Google Scholar 

  • Hanson LE, Howell CR (2004) Elicitors of plant defense responses from biocontrol strains of Trichoderma virens. Phytopathology 94:171–176

    Article  CAS  PubMed  Google Scholar 

  • Harmon GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species–opportunistic, avirulent plant symbionts. Nature Rev Microbiol 2:43–56

    Article  Google Scholar 

  • Hartley SE, Gange AC (2009) Impacts on plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annu Rev Entomol 54:323–342

    Article  CAS  PubMed  Google Scholar 

  • Hirano E, Koike M, Aiuchi D, Tani M (2008) Pre-inoculation of cucumber roots with Verticillium lecanii (Lecanicillium muscarium) induces resistance to powdery mildew. Res Bull Obihiro Univ 29:82–94

    CAS  Google Scholar 

  • Holder DJ, Keyhani NO (2005) Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Appl Environ Microbiol 71:5260–5266

    Article  CAS  PubMed  Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Inglis GD, Goettel MS, Butt TM, Strasser H (2001) Use of hyphomycetous fungi for managing insect pests. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents. Progress, problems and potential. CABI Publishing, Oxfordshire, pp 23–69

    Chapter  Google Scholar 

  • Jeger MJ, Jeffries P, Elad Y, Xu X-M (2009) A generic theoretical model for biological control of foliar plant diseases. J Theor Biol 256:201–214

    Article  CAS  PubMed  Google Scholar 

  • Kamp AM (2002) Pleiomorphic deterioration in entomopathogenic fungi. MS thesis, Brock University. St. Catherines, Ontario, Canada

  • Kanaoka M, Isogai A, Murakoshi S, Ichinoe M, Suzuki A, Tamura S (1978) Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Agr Biol Chem 42:629–635

    CAS  Google Scholar 

  • Keller S, Zimmermann G (1989) Mycopathogens of soil insects. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insect-fungus interactions. Acad Press, London, pp 239–270

    Google Scholar 

  • Kim JJ, Goettel MS, Gillespie DR (2007) Potential of Lecanicillium species for dual microbial control of aphids and the cucumber powdery mildew fungus, Sphaerotheca fuliginea. Biol Control 40:327–332

    Article  Google Scholar 

  • Kim JJ, Goettel MS, Gillespie DR (2008) Evaluation of Lecanicillium longisporum, Vertalec® for simultaneous suppression of cotton aphid, Sphaerotheca fuliginea, on potted cucumbers. Biol Control 45:404–409

    Article  Google Scholar 

  • Koike M, Higashio T, Komori A, Akiyama K, Kishimoto N, Masuda E, Sasaki M, Yoshida S, Tani M, Kuramoti K, Sugimoto M, Nagao H (2004) Verticillium lecanii (Lecanicillium spp.) as epiphyte and its application to biological control of arthropod pests and diseases. IOBC/WPRS Bull 27:41–44

    Google Scholar 

  • Korolev N, David DR, Elad Y (2008) The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. BioControl 53:667–683

    Article  CAS  Google Scholar 

  • Lacey LA, Horton DR, Jones DC, Headrick HL, Neven LG (2009) Efficacy of biofumigant fungus Muscodor albus (Ascomycota: Xylariales) for control of codling moth (Lepidoptera: Tortricidae) in stimulated storage conditions. J Econ Entomol 102:43–49

    Article  CAS  PubMed  Google Scholar 

  • Leckie BM, Ownley BH, Pereira RM, Klingeman WE, Jones CJ, Gwinn KD (2008) Mycelia and spent fermentation broth of Beauveria bassiana incorporated into synthetic diets affect mortality, growth and development of larval Helicoverpa zea (Lepidoptera: Noctuidae). Biocontrol Sci Technol 18:697–710

    Article  Google Scholar 

  • Lee S-M, Yeo W-H, Jee H-J, Shin S-C, Moon Y-S (1999) Effect of entomopathogenic fungi on growth of cucumber and Rhizoctonia solani. FRI J For Sci 62:118–125

    Google Scholar 

  • Linder MB (2009) Hydrophobins: proteins that self assemble at interfaces. Curr Opin Colloid Interface Sci 14:356–363

    Article  CAS  Google Scholar 

  • Mercier J, Jiménez JI (2004) Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biol Technol 31:1–8

    Article  Google Scholar 

  • Mercier J, Smilanick JL (2005) Control of green mold and sour rot of stored lemon by biofumigation with Muscodor albus. Biol Control 32:401–407

    Article  Google Scholar 

  • Meyer SLF, Huettel RN, Sayre RM (1990) Isolation of fungi from Heterodera glycines and in vitro bioassays for their antagonism to eggs. J Nematol 22:532–537

    CAS  PubMed  Google Scholar 

  • Meyling N, Eilenberg J (2007) Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: potential for conservation biological control. Biol Control 43:145–155

    Article  Google Scholar 

  • Morán-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutiérrez S, Lorito M, Monte E (2009) The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum-plant beneficial interaction. Mol Plant Microbe Interact 22:1021–1031

    Article  PubMed  CAS  Google Scholar 

  • Oller-López JL, Iranzo M, Mormeneo S, Oliver E, Cuerva JM, Oltra JE (2005) Bassianolone: an antimicrobial precursor of cephalosporolides E and F from the entomoparasitic fungus Beauveria bassiana. Org Biomol Chem 3:1172–1173

    Article  PubMed  CAS  Google Scholar 

  • Ownley BH, Windham MT (2007) Biological control of plant pathogens. In: Trigiano RN, Windham MT, Windham AS (eds) Plant pathology concepts and laboratory exercises, 2nd edn. CRC Press, New York, pp 423–436

    Google Scholar 

  • Ownley BH, Bishop DG, Pereira RM (2000) Biocontrol of Rhizoctonia damping-off of tomato with Beauveria bassiana. Phytopathology 90:S58

    Google Scholar 

  • Ownley BH, Pereira RM, Klingeman WE, Quigley NB, Leckie BM (2004) Beauveria bassiana, a dual purpose biocontrol organism, with activity against insect pests and plant pathogens. In: Lartey RT, Caesar A (eds) Emerging concepts in plant health management. Research Signpost, Kerala, pp 256–269

    Google Scholar 

  • Ownley BH, Griffin MR, Klingeman WE, Gwinn KD, Moulton JK, Pereira RM (2008) Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol 3:267–270

    Article  CAS  Google Scholar 

  • Perazzolli M, Dagostin S, Ferrar A, Elad Y, Pertot I (2008) Induction of systemic resistance against Plasmopara viticola in grapevine by Trichoderma harzianum T39 and benzothiadiazole. Biol Control 47:228–234

    Article  CAS  Google Scholar 

  • Petrini O (1981) Endophytische pilze in epiphytischen Araceae, Bromeliaceae und Orchidiaceae. Sydowia 34:135–148

    Google Scholar 

  • Posada F, Vega FE (2005) Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao). Mycologia 97:1195–1200

    Article  PubMed  Google Scholar 

  • Powell WA, Klingeman WE, Ownley BH, Gwinn KD (2009) Evidence of endophytic Beauveria bassiana in seed-treated tomato plants acting as a systemic entomopathogen to larval Helicoverpa zea (Lepidoptera: Noctuidae). J Entomol Sci 44:391–396

    Google Scholar 

  • Reisenzein H, Tiefenbrunner W (1997) Growth inhibiting effect of different isolates of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuill. to the plant parasitic fungi of the genera Fusarium, Armillaria and Rosellinia. Pflanzenschutz Berichte 57:15–24

    Google Scholar 

  • Reithner B, Schuhmacher R, Stoppacher N, Pucher M, Brunner K, Zeilinger S (2007) Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol 44:1123–1133

    Article  CAS  PubMed  Google Scholar 

  • Renwick A, Campbell R, Coe S (1991) Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Pathol 40:524–532

    Article  Google Scholar 

  • Riga K, Lacey LA, Guerra N (2008) The potential of the endophytic fungus, Muscodor albus, as a biocontrol agent against economically important plant parasitic nematodes of vegetable crops in Washington State. Biol Control 45:380–385

    Article  Google Scholar 

  • Ruocco M, Lanzuise S, Vinale F, Marra R, Turrà D, Woo SL, Lorito M (2009) Identification of a new biocontrol gene in Trichoderma atroviride: the role of an ABC transporter membrane pump in the interaction with different plant pathogenic fungi. Mol Plant Microbe Interact 22:291–301

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Systemat 29:319–343

    Article  Google Scholar 

  • Saksirirat W, Hoppe H-H (1991) Degradation of uredospores of the soybean rust fungus (Phakopsora pachyrhizi Syd.) by cell-free culture filtrates of the mycoparasite Verticillium psalliotae Treschow. J Phytopathology 132:33–45

    Article  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Segarra G, Casanova E, Bellido D, Odena MA, Oliveira E, Trillas I (2007) Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–3952

    Article  CAS  PubMed  Google Scholar 

  • Shakeri J, Foster HA (2007) Proteolytic activity and antibiotic production by Trichoderma harzianum in relation to pathogenicity to insects. Enzym Microb Tech 40:961–968

    Article  CAS  Google Scholar 

  • Shinya R, Aiuchi D, Kushida A, Tani M, Kuramochi K, Koike M (2008) Effects of fungal culture filtrates of Verticillium lecanii (Lecanicillium spp.) hybrid strains on Heterodera glycines eggs and juveniles. J Invertebr Pathol 97:291–297

    Article  PubMed  Google Scholar 

  • Shoresh M, Harman GE (2008) The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 147:2147–2163

    Article  CAS  PubMed  Google Scholar 

  • Spencer DM, Atkey PT (1981) Parasitic effects of Verticillium lecanii on two rust fungi. Trans Br Mycol Soc 77:535–542

    Article  Google Scholar 

  • St. Leger RJ, Joshi L, Roberts DW (1997) Adaptation of proteases and carbohydrases of saprophytic, phytopathogenic, and entomopathogenic fungi to the requirements of their ecological niches. Microbiology 143:1983–1992

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA (2006) Muscodor albus and its biological promise. J Ind Microbiol Biotechnol 33:514–522

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943–2950

    CAS  PubMed  Google Scholar 

  • Taniguchi M, Kawaguchi T, Tanaka T, Oi S (1984) Antimicrobial and respiration inhibitory activities of oosporein. Agr Biol Chem 48:1065–1067

    CAS  Google Scholar 

  • Tefera T, Vidal S (2009) Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. BioControl 54:663–669

    Article  Google Scholar 

  • Termorshuizen AJ, Jeger MJ (2009) Strategies of soilborne plant pathogenic fungi in relation to disease suppression. Fung Ecol 1:108–114

    Article  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathology 36:453–483

    Article  Google Scholar 

  • Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Article  PubMed  CAS  Google Scholar 

  • Vandermeer J, Perfecto I, Liere H (2009) Evidence for hyperparasitism of coffee rust (Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii, through a complex ecological web. Plant Pathol 58:636–641

    Article  Google Scholar 

  • Vargas WA, Djonović S, Sukno SA, Kenerley CM (2008) Dimerization controls the activity of fungal elicitors that trigger systemic resistance in plants. J Biol Chem 283:19804–19815

    Article  CAS  PubMed  Google Scholar 

  • Vega FE (2008) Insect pathology and fungal endophytes. J Invertebr Pathol 98:277–279

    Article  PubMed  Google Scholar 

  • Vega FE, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82

    Article  Google Scholar 

  • Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania M, Monzón A, Ownley BH, Pell JK, Rangel DEN, Roy HE (2009a) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2:149–159

    Article  Google Scholar 

  • Vega FE, Simpkins A, Aime MC, Posada F, Peterson SW, Rehner SA, Infante F, Castillo A, Arnold AE (2009b) Fungal endophyte diversity in coffee plants from Colombia, Hawai’i, Mexico, and Puerto Rico. Fungal Ecol (in press)

  • Verhaar MA, Hijwegen T, Zadoks JC (1996) Glasshouse experiments on biocontrol of cucumber powdery mildew (Sphaerotheca fuliginea) by the mycoparasites Verticillium lecanii and Sporothrix rugulosa. Biol Control 6:353–360

    Article  Google Scholar 

  • Vesely D, Koubova D (1994) In vitro effect of the entomopathogenic fungi Beauveria bassiana (Bals.-Criv.) Vuill. and B. brongniartii (Sacc.) Petch on phytopathogenic fungi. Ochr Rostl 30:113–120

    Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti DL, Marra R, Woo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Viterbo A, Chet I (2006) TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Mol Plant Pathol 7:249–258

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM (1993) A review of white rust (Puccinia horiana Henn.) disease on chrysanthemum and the potential for its biological control with Verticillium lecanii (Zimm.) Viégas. Ann Appl Biol 122:173–187

    Article  Google Scholar 

  • White JF, Belanger F, Meyer W, Sullivan RF, Bischoff JF, Lewis EA (2002) Clavicipitalean fungal epibionts and endophytes-development of symbiotic interactions with plants. Symbiosis 33:201–213

    Google Scholar 

  • Widler B, Müller E (1984) Untursuchungen über endophytische Pilze von Arctostaphylos uva-ursi (L.) Sprenger (Ericaceae). Bot Helv 94:307–337

    Google Scholar 

  • Ying S-H, Feng M-G (2004) Relationship between thermotolerance and hydrophobin-like proteins in aerial conidia of Beauveria bassiana and Paecilomyces fumosoroseus as fungal biocontrol agents. J Appl Microbiol 97:323–331

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhao J, Fang W, Zhang J, Luo Z, Zhang M, Fan Y, Pei Y (2009) Mitogen-activated protein kinase hog1 in the entomopathogenic fungus Beauveria bassiana regulates environmental stress responses and virulence to insects. Appl Environ Microbiol 75:3787–3795

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonnie H. Ownley.

Additional information

Handling Editor: Helen Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ownley, B.H., Gwinn, K.D. & Vega, F.E. Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl 55, 113–128 (2010). https://doi.org/10.1007/s10526-009-9241-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-009-9241-x

Keywords

Navigation