Skip to main content
Log in

H control of multiple model subject to actuator saturation: application to quarter-car suspension system

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper deals with the H control of nonlinear systems in multiple model representation subject to actuator saturation. An application to Quarter-Car suspension system under actuator saturation is then given using the multiple model approach. The concept of so-called parallel distributed compensation (PDC) is employed for designing control system. The idea of this controller consists in designing a linear feedback control for each local linear model. To address the input saturation problem in this paper, both constrained and saturated controls input cases are proposed. In the two cases, H stabilization conditions in the sense of Lyapunov method are derived. Moreover, a controller design with larger attraction domain is formulated and solved as a linear matrix inequality (LMI) optimization problem. Our simulation results show that both the saturated and constrained controls can stabilize the resulting closed-loop suspension system and eliminate the effect of external disturbances. Indeed, the main roles of car suspension systems, which consist on improving ride comfort of passengers and the road holding capacity of the vehicle, are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liu, H., Nonami, K., & Hagiwara, T. (2008). Active following fuzzy output feedback sliding mode control of real-vehicle semi-active suspensions. Journal of Sound and Vibration, 314, 39–52.

    Article  Google Scholar 

  2. Jomas da Silva, J. M., Jr. (1997). Sur la stabilité locale de systèmes linéaires avec saturation des commandes. Doctorat Thesis, Université Paul Sabatier de Toulouse, laboratoire d’analyse et d’architecture des systèmes du CNRS.

  3. Henrion, D., & Tarbouriech, S. (1999). LMI relaxations for robust stability of linear systems with saturating. Automatica, 35, 1599–1604.

    Article  MathSciNet  MATH  Google Scholar 

  4. Kapoor, N., & Daoutidis, P. (2000). Stabilization of non linear processes with input constraints. Computers and Chemical Engineering, 24, 9–21.

    Article  Google Scholar 

  5. Jomas da Silva, J. M., Jr., & Tarbouriech, S. (2006). Anti-windup design region of stability for discrete-time linear systems. System &Control Letters, 55, 184–192.

    Article  Google Scholar 

  6. Hu, T., Teel, A. R., & Zaccarian, L. (2008). Anti-windup synthesis for linear control systems with input saturation: Achieving regional, nonlinear performance. Automatica, 44, 512–519.

    Article  MathSciNet  Google Scholar 

  7. Cao, Y. Y., & Lin, Z. (2003). Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation. IEEE Transaction on Systems, 11, 57–67.

    Article  Google Scholar 

  8. Han, H. (2007). T-S Fuzzy controller in consideration of input constraint. In Second international conference on innovative computing, information and control, 5–7 September, Kumamoto, Japan.

  9. Kim, S. H., Lee, C. H., & Park, P. G. (2009). H∞ state-feedback control for fuzzy systems with input saturation via fuzzy weighting-dependent Lyapunov functions. Computers and Mathematics with Applications, 57, 981–990.

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, T., Feng, G., Liu, H., & Lu, J. (2009). Piecewise fuzzy Anti-Windup dynamic output feedback control of nonlinear processes with amplitude and rate actuator saturations. IEEE Transactions on Fuzzy System, 17, 253–263.

    Article  Google Scholar 

  11. Ting, C. S., Li, T. H. S., & Kung, F. C. (1995). Design of fuzzy controller for active suspension system. Mechatronics, 5, 365–383.

    Article  Google Scholar 

  12. Murray-Smith, R., & Johansen, T. (1997). A multiple model approaches to modeling and control. London: Taylor & Francis.

    Google Scholar 

  13. Chadli, M., Akhenak, A., Ragot, J., & Maquin, D. (2009). State and unknown input estimation for discrete time multiple model. Journal of the Franklin Institute, 346(6), 593–610.

    Article  MathSciNet  MATH  Google Scholar 

  14. Lo, J. C., & Lin, M. L. (2003). Robust nonlinear control via fuzzy static output feedback. IEEE on Transactions on Circuits and System, 50, 1494–1502.

    Article  MathSciNet  Google Scholar 

  15. Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. Philadelphia, PA: SIAM.

    MATH  Google Scholar 

  16. Du, H., & Zhang, N. (2009). Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint. IEEE Transaction on Fuzzy System, 17, 343–356.

    Article  Google Scholar 

  17. Ando, Y., & Suzuki, M. (1999). Control of active suspension systems using the singular perturbation method. Control Engineering Practice, 4, 287–293.

    Article  Google Scholar 

  18. Chadli, M., Rabhi, A., & El Hajjaji, A. (2008). Observer-based H∞ fuzzy control for vehicle active suspension. In 16th IEEE mediterranean conference on control and automation, Ajaccio, France.

  19. Saifia, D., Chadli, M., & Labiod, S. (2010). Static output feedback stabilization of multiple models subject to actuators saturation. In 12th IFAC LSS Symposium, 11–14 July, Villeneuve d’Ascq, France.

  20. Yagiz, N., & Hacioglu, Y. (2008). Backstepping control of a vehicle with active suspensions. Control Engineering, 16, 1457–1467.

    Article  Google Scholar 

  21. Xiaodong, L., & Qingling, Z. (2003). New approaches to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI. Automatica, 39, 1571–1582.

    Article  MATH  Google Scholar 

  22. D’Amato, F. J., & Viassolo, D. E. (2000). Fuzzy control for active suspensions. Mechatronics, 10, 897–920.

    Article  Google Scholar 

  23. Salem, M. M. M., & Aly, A. A. (2009). Fuzzy control of a quarter-car suspension system. World Academy of Science, Engineering and Technology, 53, 258–263.

    Google Scholar 

  24. Fateh, M. M., & Alavi, S. S. (2009). Impedance control of an active suspension system. Mechatronics, 19, 134–140.

    Article  Google Scholar 

  25. Huang, S. J., & Chen, H. Y. (2006). Adaptive sliding controller with self-tuning fuzzy compensation for vehicle suspension control. Mechatronics, 16, 607–622.

    Article  Google Scholar 

  26. Yamashita, M., Kazuo, F., Hayakawa, K., & Kimura, H. (1994). Application of H control to active suspension systems. Automatica, 30(11), 1717–1729.

    Article  Google Scholar 

  27. Chadli, M. (2010). An LMI approach to design observer for unknown inputs Takagi-Sugeno fuzzy models. Asian Journal of Control, 12(4), 2010.

    MathSciNet  Google Scholar 

  28. Chadli, M., & Elhajjaji, A. (2006). Observer-based robust fuzzy control of nonlinear systems with parametric uncertainties—comment on. Fuzzy Sets and Systems, 157(9), 1276–1281.

    Article  MathSciNet  MATH  Google Scholar 

  29. Henrion, D. (1999). Stabilité des systèmes linéaires incertains à commande contrainte. Doctorat Thesis, Université Paul Sabatier de Toulouse, Laboratoire d’analyse et d’architecture des systèmes du CNRS.

  30. Hu, T., & Lin, Z. (2001). Control system linear systems with actuator saturation. Analysis and design (Vol. xvi). Boston: Birkhäuse.

    Book  Google Scholar 

  31. Moreau, X., Rizzo, A., & Oustaloup, A., (2009). Improvement of hydractive suspension hard mode comfort thanks to a low frequency active crone system. Part 2: Control part and simulation results. In International design engineering technical conferences & computers and information in engineering.

  32. Oustaloup, A., Moreau, X., & Nouillant, M. (1996). The CRONE suspension. Control Engineering Practice, 4(8), 1101–1108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Chadli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saifia, D., Chadli, M. & Labiod, S. H control of multiple model subject to actuator saturation: application to quarter-car suspension system. Analog Integr Circ Sig Process 69, 81–90 (2011). https://doi.org/10.1007/s10470-011-9628-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-011-9628-3

Keywords

Navigation