Skip to main content
Log in

On the Dalgaard-Strulik Model with Logistic Population Growth Rate and Delayed-Carrying Capacity

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Recently Dalgaard and Strulik have proposed (in Resour. Energy Econ. 33:782–797, 2011) an energy model of capital accumulation based on the mathematical framework developed by Solow-Swan and coupled with Cobb-Douglas production function (Solow in Q. J. Economics 70:65–94, 1956; Swan in Econ. Rec. 32(63):334–361, 1956). The model is based on a constant rate of population growth assumption. The present paper, according to the analysis performed by Yukalov et al. (Physica D 238:1752–1767, 2009), improves the Dalgaard-Strulik model by introducing a logistic-type equation with delayed carrying capacity which alters the asymptotic stability of the relative steady state. Specifically, by choosing the time delay as a bifurcation parameter, it turns out that the steady state loses stability and a Hopf bifurcation occurs when time delay passes through critical values. The results are of great interest in the applied and theoretical economics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, C.T.H., Bocharov, G.A., Paul, C.A.H.: Mathematical modelling of the interleukin-2 T-cell system: a comparative study of approaches based on ordinary and delay differential equations. J. Theor. Med. 2, 117–128 (1997)

    Article  Google Scholar 

  2. Banavar, J.R., Maritan, A., Rinaldo, A.: Size and form in efficient transportation networks. Nature 399, 130–132 (1999)

    Article  Google Scholar 

  3. Banks, R.B.: Growth and Diffusion Phenomena: Mathematical Frameworks and Applications. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  4. Bianca, C.: Mathematical modelling for keloid formation triggered by virus: malignant effects and immune system competition. Math. Models Methods Appl. Sci. 21, 389–419 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bianca, C.: Kinetic theory for active particles modelling coupled to Gaussian thermostats. Appl. Math. Sci. 6, 651–660 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Bianca, C.: An existence and uniqueness theorem to the Cauchy problem for thermostatted-KTAP models. Int. J. Math. Anal. 6, 813–824 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Bianca, C.: Onset of nonlinearity in thermostatted active particles models for complex systems. Nonlinear Anal., Real World Appl. 13, 2593–2608 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bianca, C.: Modeling complex systems by functional subsystems representation and thermostatted-KTAP methods. Appl. Math. Inf. Sci. 6, 495–499 (2012)

    Google Scholar 

  9. Bianca, C.: Thermostatted kinetic equations as models for complex systems in physics and life sciences. Phys. Life Rev. 9, 359–399 (2012)

    Article  Google Scholar 

  10. Bianca, C.: Existence of stationary solutions in kinetic models with Gaussian thermostats. Math. Methods Appl. Sci. (2013). doi:10.1002/mma.2722

    MathSciNet  Google Scholar 

  11. Bianca, C., Pennisi, M.: The triplex vaccine effects in mammary carcinoma: a nonlinear model in tune with simtriplex. Nonlinear Anal., Real World Appl. 13, 1913–1940 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bianca, C., Ferrara, M., Guerrini, L.: Hopf bifurcations in a delayed-energy-based model of capital accumulation. Appl. Math. Inf. Sci. 7, 139–143 (2013)

    Article  MathSciNet  Google Scholar 

  13. Bianca, C., Ferrara, M., Guerrini, L.: The Cai model with time delay: existence of periodic solutions and asymptotic analysis. Appl. Math. Inf. Sci. 7, 21–27 (2013)

    Article  MathSciNet  Google Scholar 

  14. Bucci, A., Guerrini, L.: Transitional dynamics in the Solow-Swan growth model with AK technology and logistic population change. B E J. Macroecon. 9, 1–16 (2009)

    Google Scholar 

  15. Dalgaard, C.L., Strulik, H.: Energy distribution and economic growth. Resour. Energy Econ. 33, 782–797 (2011)

    Article  Google Scholar 

  16. Ferrara, M.: Demographic dynamics and green economy: a sustainable growth model. Istituto Lombardo (Rend. Lett.) 143, 447–468 (2009)

    Google Scholar 

  17. Ferrara, M.: An AK Solow model with logistic law technology. Int. J. Pure Appl. Math. 67, 337–340 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Ferrara, M.: A note on the Solow economic growth model with Richards population growth law. Appl. Sci. 13, 36–39 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Ferrara, M., Guerrini, L.: On the dynamics of a three sector growth model. Int. Econ. Rev. 55, 275–283 (2008)

    Article  Google Scholar 

  20. Galor, O.: From stagnation to growth: unified growth theory. In: Aghion, P., Durlauf, S. (eds.) Handbook of Economic Growth, vol. 1A. North-Holland, Amsterdam (2005)

    Google Scholar 

  21. Guerrini, L.: The Solow-Swan model with a bounded population growth rate. J. Math. Econ. 42, 14–21 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guerrini, L.: The Ramsey model with a bounded population growth rate. J. Macroecon. 32, 872–878 (2010)

    Article  Google Scholar 

  23. Guerrini, L.: The Ramsey model with AK technology and a bounded population growth rate. J. Macroecon. 32, 1178–1183 (2010)

    Article  Google Scholar 

  24. Guerrini, L.: A closed-form solution to the Ramsey model with logistic population growth. Econ. Model. 27, 1178–1182 (2010)

    Article  Google Scholar 

  25. Guerrini, L.: Transitional dynamics in the Ramsey model with AK technology and logistic population change. Econ. Lett. 109, 17–19 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hassard, B., Kazarino, D., Wan, Y.: Theory and Application of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  27. Hutchinson, G.E.: Circular causal systems in ecology. Ann. N.Y. Acad. Sci. 50, 221–246 (1948)

    Article  Google Scholar 

  28. Kühnert, C., Helbing, D., West, G.: Scaling laws in urban supply networks. Physica A 363, 96–103 (2006)

    Article  Google Scholar 

  29. Malthus, T.R.: An Essay on the Principle of Population. Oxford World’s Classics. Oxford University Press, Oxford (1999)

    Google Scholar 

  30. Ramsey, F.P.: A mathematical theory of saving. Econ. J. 38, 543–559 (1928)

    Article  Google Scholar 

  31. Solow, R.M.: A contribution to the theory of economic growth. Q. J. Econ. 70, 65–94 (1956)

    Article  Google Scholar 

  32. Swan, T.W.: Economic growth and capital accumulation. Econ. Rec. 32(63), 334–361 (1956)

    Article  Google Scholar 

  33. Verhulst, P.F.: Notice sur la loi que la population suit dans son accroissement. Corresp. Math. Phys. 10, 113–121 (1838)

    Google Scholar 

  34. Wright, E.M.: A non-linear difference-differential equation. J. Reine Angew. Math. 194, 66–87 (1955)

    MathSciNet  MATH  Google Scholar 

  35. Yukalov, V.I., Yukalova, E.P., Sornette, D.: Punctuated evolution due to delayed carrying capacity. Physica D 238, 1752–1767 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Bianca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianca, C., Guerrini, L. On the Dalgaard-Strulik Model with Logistic Population Growth Rate and Delayed-Carrying Capacity. Acta Appl Math 128, 39–48 (2013). https://doi.org/10.1007/s10440-013-9800-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-013-9800-0

Keywords

Navigation