Skip to main content

Advertisement

Log in

Wavelength Selection Method with Standard Deviation: Application to Pulse Oximetry

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Near-infrared spectroscopy provides useful biological information after the radiation has penetrated through the tissue, within the therapeutic window. One of the significant shortcomings of the current applications of spectroscopic techniques to a live subject is that the subject may be uncooperative and the sample undergoes significant temporal variations, due to his health status that, from radiometric point of view, introduce measurement noise. We describe a novel wavelength selection method for monitoring, based on a standard deviation map, that allows low-noise sensitivity. It may be used with spectral transillumination, transmission, or reflection signals, including those corrupted by noise and unavoidable temporal effects. We apply it to the selection of two wavelengths for the case of pulse oximetry. Using spectroscopic data, we generate a map of standard deviation that we propose as a figure-of-merit in the presence of the noise introduced by the living subject. Even in the presence of diverse sources of noise, we identify four wavelength domains with standard deviation, minimally sensitive to temporal noise, and two wavelengths domains with low sensitivity to temporal noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Aldrich, T. K., M. Moosikasuwan, S. D. Shah, and K. S. Deshponde. Length-normalized pulse photoplethysmography: a noninvasive method to measure blood hemoglobin. Ann. Biomed. Eng. 30:1291–1298, 2002.

    Article  PubMed  Google Scholar 

  2. Aoyagi, T. Pulse oximetry its invention, theory, and future. J. Anesth. 17(4):259–266, 2003.

    Article  PubMed  Google Scholar 

  3. Aoyagi, T., M. Fuse, N. Kobayashi, K. Machida, and K. Miyasaka. Multi-wavelength pulse oximetry: theory for the future. Anesth. Analg. 105(6 Suppl):S53–S58, 2007.

    Article  PubMed  Google Scholar 

  4. Aoyagi, T., and K. Miyasaka. Pulse oximetry: its invention, contribution to medicine and future tasks. Anesth. Analg. 94:S1–S3, 2002.

    PubMed  Google Scholar 

  5. Baker, C. Pulse oximeter with parallel saturation calculation modules. United State Patent, 20050124871 (2005).

  6. Barker, S. J., J. Curry, D. Redford, and S. Morgan. Measurements or carboxyhemoglobin and methemoglobin by pulse oximetry: a human volunteer study. Anesthesiology 105:892–897, 2007.

    Article  Google Scholar 

  7. Cannesson, M., and P. Talke. Recent advances in pulse oximetry. F1000 Med. Rep. 1:66, 2009.

    PubMed  Google Scholar 

  8. Choi, J. H., M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton. Noninvasive determination of the optical properties of adult brain near-infrared spectroscopy approach. J. Biomed. Opt. 9(1):221–229, 2004.

    Article  PubMed  Google Scholar 

  9. Culver, J. P., A. M. Siegel, J. J. Stott, and D. A. Boas. Volumetric diffuse optical tomography of brain activity. Opt. Lett. 28(21):2061–2063, 2003.

    Article  PubMed  Google Scholar 

  10. Cysewska-Sobusiak, A. One-dimensional representation of light-tissue interaction for application in noninvasive oximetry. Opt. Eng. 36(4):1225–1233, 1997.

    Article  CAS  Google Scholar 

  11. Desebbe, O., and M. Cannesson. Using ventilation induced plethysmographic variations to optimize patient fluid status. Curr. Opin. Anaesthesiol. 21:772–778, 2008.

    Article  PubMed  Google Scholar 

  12. Fantini, S., and M. A. Franceschini. Frequency-domain techniques for tissue spectroscopy and imaging. In: Handbook of Optical Biomedical Diagnostics, edited by V. V. Tuchin. Bellingham: SPIE Press, 2002.

    Google Scholar 

  13. Gratton, E., V. Toronov, U. Wolf, M. Wolf, and A. Webb. Measurement of brain activity by near-infrared light. J. Biomed. Opt. 10(1):8–13, 2005.

    Article  Google Scholar 

  14. Hayes, M. J., and P. R. Smith. A new method for pulse oximetry possessing inherent insensitivity to artifact. IEEE Trans. Biomed. Eng. 48:452–461, 2001.

    Article  PubMed  CAS  Google Scholar 

  15. Humphreys, K., T. Ward, and C. Markham. Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry. Rev. Sci. Instrum. 78(4):1–6, 2007.

    Article  Google Scholar 

  16. Ignjatovic, N., M. Vasiljevic, D. Milic, J. Stefanovic, M. Stojanovic, A. Karanikolic, A. Zlatic, G. Djordjevic, S. Zivic, L. Jeremic, I. Djordjevic, and R. Jankovic. Diagnostic importance of pulse oximetry in the determination of the stage of chronic arterial insufficiency of lower extremities. Srp. Arh. Celok. Lek. 138(5–6):300–304, 2010.

    Article  PubMed  Google Scholar 

  17. Kurth, C. D., and W. Thayer. A multiwavelength frequency-domain near-infrared cerebral oximeter. Phys. Med. Biol. 44(3):727–740, 1999.

    Article  PubMed  CAS  Google Scholar 

  18. Liu, H., D. A. Boas, Y. Zhang, A. G. Yodh, and B. Chance. Determination of optical properties and blood oxygenation in tissue continuous NIR light. Phys. Med. Biol. 40(11):1983–1993, 1995.

    Article  PubMed  CAS  Google Scholar 

  19. Lopez-Silva, S. M., M. L. Dotor-Castilla, and J. P. Silveira-Martin. Near-infrared transmittance pulse oximetry with laser diodes. J. Biomed. Opt. 8(3):525–533, 2003.

    Article  PubMed  Google Scholar 

  20. Mannheimer, P. D., J. R. Casciani, M. E. Fein, and S. L. Nierlich. Wavelength selection for low saturation pulse oximetry. IEEE Trans. Biomed. Eng. 44(3):148–158, 1997.

    Article  PubMed  CAS  Google Scholar 

  21. Mobley, J., and T. Vo-Dinh. Light-tissue inter-actions. In: Biomedical Photonics Handbook, edited by T. Vo-Dinh. New York: CRC Press, 2003.

    Google Scholar 

  22. Nelson, L. A., J. C. McCann, A. W. Loepke, J. Wu, B. B. Dor, and C. D. Kurth. Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia. J. Biomed. Opt. 11(6):1–8, 2006.

    Article  Google Scholar 

  23. Nitzan, M., A. Babchenko, B. Khanokh, and H. Taitelbaum. Measurement of oxygen saturation in venous blood by dynamic near infrared spectroscopy. J. Biomed. Opt. 5(2):155–162, 2000.

    Article  PubMed  CAS  Google Scholar 

  24. Nitzan, M., and E. Shlomo. Three-wavelength technique for the measurement of oxygen saturation in arterial blood and in venous blood. J. Biomed. Opt. 14(2):1–6, 2009.

    Article  Google Scholar 

  25. Niwayama, M., L. Lin, J. Shao, N. Kudo, and K. Yamamoto. Quantitative measurement of muscle hemoglobin oxygenation using near-infrared spectroscopy with correction of the influence of a subcutaneous fat layer. Rev. Sci. Instrum. 71(12):4571–4575, 2000.

    Article  CAS  Google Scholar 

  26. Paez G., C. Vazquez-Jaccaud, and M. Strojnik. Development of noise-immune oximetry: theory and measurement. In: Proc. SPIE 6307, 63070F, 2006.

  27. Petterson, M. T., V. L. Begnoche, and J. M. Graybeal. The effect of motion on pulse oximetry and its clinical significance. Anesth. Analog. 105(6 Suppl):S78–S84, 2007.

    Article  Google Scholar 

  28. Phillips, J. P., R. M. Langford, S. H. Chang, K. Maney, P. A. Kyriacou, and D. P. Jones. An oesophageal pulse oximetry system utilising a fiber-optic probe. J. Phys.: Conf. Ser. 178:012021, 2009.

    Article  Google Scholar 

  29. Pittman, R. N. In vivo photometric analysis of hemoglobin. Ann. Biomed. Eng. 14:119–137, 1986.

    Article  PubMed  CAS  Google Scholar 

  30. Pogue, B. W., and M. S. Patterson. Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. J. Biomed. Opt. 11(4):1–16, 2006.

    Article  Google Scholar 

  31. Rice, J. A. Mathematical Statistics and Data Analysis (2nd ed.). Pacific Grove, CA: Duxburry Press, 1995.

    Google Scholar 

  32. Rothmaier, M., B. Selm, S. Spichtig, D. Haensse, and M. Wolf. Photonic textiles for pulse oximetry. Opt. Express 16(17):12973–12986, 2008.

    Article  PubMed  CAS  Google Scholar 

  33. Salyer, J. W. Neonatal and pediatric pulse oximetry. Respir. Care 48(4):386–396, 2003.

    PubMed  Google Scholar 

  34. Sebald, D. J. Motivation of pulse oximetry. In: Design of Pulse Oximeters, edited by J. G. Webster. Bristol: IOP Publishing, 1997.

    Google Scholar 

  35. Shao, J., L. Lin, M. Niwayama, N. Kudo, and K. Yamamoto. Theoretical and experimental studies on linear and nonlinear algorithms for the measurement of muscle oxygenation using continuous-wave near-infrared spectroscopy. Opt. Eng. 40(10):2293–2301, 2001.

    Article  CAS  Google Scholar 

  36. Shelley, K. H. Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate. Anesth. Analg. 105:S31–S36, 2007.

    Article  PubMed  Google Scholar 

  37. Smith, M. H. Optimum wavelength combinations for retinal vessel oximetry. Appl. Opt. 38(1):258–267, 1999.

    Article  PubMed  CAS  Google Scholar 

  38. Strojnik, M., and G. Paez. Radiometry. In: Handbook of Optical Engineering, edited by D. Malacara, and B. Thompson. New York: Marcel Dekker, 2001.

    Google Scholar 

  39. Tromberg, B. J., B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi. Assessing the future of diffuse optical imaging technologies for breast cancer management. Med. Phys. 35(6):2443–2451, 2008.

    Article  PubMed  Google Scholar 

  40. Vacas-Jaques, P., G. Paez, and M. Strojnik. Pass-through photon-based biomedical transillumination. J. Biomed. Opt. 13(4):1–10, 2008.

    Google Scholar 

  41. Vazquez-Jaccaud, C., G. Paez, and M. Strojnik. Oximetry using a novel expression for oxygen saturation. In: AITA 2007 Proceedings, Leon, Mexico, 2008, pp. 451–457.

  42. Wray, S., M. Cope, D. Delpy, J. Wyatt, and O. Reynolds. Characterization of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the non invasive monitoring of cerebral oxygenation. Biochim. Biophys. Acta 933:184–192, 1988.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to acknowledge the financial support of CONACYT through the project: “Applications of infrared interferometry for biomedical tomography” (CONACYT 2007-I0003-60450). C. Vazquez-Jaccaud was a recipient of the CONACYT fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Paez.

Additional information

Associate Editor Miklos Gratzl oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vazquez-Jaccaud, C., Paez, G. & Strojnik, M. Wavelength Selection Method with Standard Deviation: Application to Pulse Oximetry. Ann Biomed Eng 39, 1994–2009 (2011). https://doi.org/10.1007/s10439-011-0304-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0304-7

Keywords

Navigation