Skip to main content
Log in

Can drought tolerance of Norway spruce (Picea abies (L.) Karst.) be increased through thinning?

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

To investigate whether drought tolerance of individual trees can be increased through the provision of more growing space, trees from a thinning experiment were analysed for reductions in radial growth during drought years and their subsequent recovery. Tree-ring widths were quantified on increment cores as well as stem discs of 32 trees from stands of a thinning trial established in 1974 in 27-year-old spruce stands in the Alpine Foreland of Southwest Germany. Three different thinning regimes of the trial were selected for this study: unthinned control (8 trees), moderate (13 trees) and heavy thinning (11 trees) intensities. All trees sampled were of a co-dominant to dominant canopy status. The standardisation of growth data was carried out using the software program ARSTAN (University of Arizona). For the year 1976—a widespread and severe drought year in Germany—we found year ring widths were not reduced compared to those of the pre-drought years for all treatments. However, we observed the formation of false year rings and resin ducts for this year in all trees investigated. The drought events in 1992 and 2003 led to severe growth depressions in the year of the drought event in all trees, regardless of previous thinning regimes. However, the resilience—the recovery of basal area growth in subsequent years—was significantly more rapid in trees from heavily thinned stands, even if the drought event occurred more than 10 years after the last thinning intervention. This indicates a shorter stress period for trees with more growing space, which may reduce the susceptibility to secondary pathogens or pest species such as bark beetles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abetz P, Klädtke J (2000) Die Df-2000. Eine Entscheidungshilfe für Durchforstungen. AFZ Der Wald 55:454–455

    Google Scholar 

  • Aussenac G, Granier A (1988) Effects of thinning on water stress and growth in Douglas-fir. Can J For Res 18:100–105

    Article  Google Scholar 

  • BMELV (2008) In: National Forest Inventory (BWI): Alle Ergebnisse und Berichte. Available via http://www.bundeswaldinventur.de

  • Bolte A, Ibisch P (2007) Neun Thesen zu Klimawandel, Waldbau und Waldnaturschutz. AFZ Der Wald 62:572–576

    Google Scholar 

  • Brang P, Bugmann H, Bürgi A, Mühlethaler U, Rigling A, Schwitter R (2008) Climate change as a challenge for silviculture. Schweiz Z Forstwes 159:362–373

    Article  Google Scholar 

  • Breda N, Granier A, Aussenac G (1995) Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt) Liebl). Tree Physiol 15:295–306

    PubMed  Google Scholar 

  • Cescatti A, Piutti E (1998) Silvicultural alternatives, competition regime and sensitivity to climate in a European beech forest. For Ecol Manage 102(2–3):213–223

    Article  Google Scholar 

  • Cook ER (1985) A time series analysis approach to tree ring standardization. Dissertation, University of Arizona, 171 p

  • Demuth S, Heinrich B (1997) Temporal and spatial behaviour of drought in south Germany. In: Regional hydrology: concepts and models for sustainable water resource management. International Association of Hydrological Sciences. IAHS Press, Wallingford, 246:151–157

  • Dohrenbusch A, Jaehne S, Bredemeier M, Lamersdorf N (2002) Growth and fructification of a Norway spruce (Picea abies L. Karst) forest ecosystem under changed nutrient and water input. Ann For Sci 59:359–368

    Article  Google Scholar 

  • Eichkorn T (1986) Growth analyses of spruces in the south-west of the Federal Republic of Germany. Allg Forst u J-Ztg 157:125–139

    Google Scholar 

  • Eklund B (1957) Om granes arsring variationer inom melesta Norrland och deras sam band med klimatet. Medd Stat Skogsforskninginst 47:1–63

    Google Scholar 

  • FAO (1998) World reference base of soil resources: http://www.fao.org/ag/agl/agll/wrb

  • Feeney SR, Kolb TE, Covington WW, Wagner MR (1998) Influence of thinning and burning restoration treatments on presettlement ponderosa pines at the Gus Pearson Natural Area. Can J For Res 28(9):1295–1306

    Article  Google Scholar 

  • FVA (2005) Der Waldzustandsbericht 2005 der Forstlichen Versuchs- und Forschungsanstalt Baden-Württemberg, 58 p

  • Gracia CA, Sabate S, Martinez JM, Albeza E (1999) Functional responses to thinning. In: Roda F, Retana J, Gracia CA, Bellot J (eds) Ecological studies 137. Ecology of mediterranean evergreen Oak Forests. Springer, Berlin, pp 329–338

    Google Scholar 

  • Holmsgaard E (1955) Tree-ring analysis of Danish forest trees. Det forstige Forsogsvæsen i Danmark 22:1–246

    Google Scholar 

  • Huss J (1998) Der Fichten-Durchforstungsversuch Göggingen. Eisschäden an Fichten in einem Durchforstungsversuch. Allg Forstzeitg 53:430–432

    Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. In: Pachauri RK, Reisinger A (eds) Core Writing Team. IPCC, Geneva, 104

  • Kattenberg A, Giorgi F, Grassl H, Meehl GA, Mitchell JFB, Stouffer RJ, Tokioka T, Weaver AJ, Wigley TML (1996) Climate models—projections of future climate. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Climate change 1995. The science of climate change. Contribution of WG I to the 2nd assessment report of the IPCC. Cambridge University Press, Cambridge, pp 285–357

  • Kazda M, Pichler M (1998) Priority assessment for conversion of Norway spruce forests through introduction of broadleaf species. For Ecol Manage 102:245–258

    Article  Google Scholar 

  • Koelling C (2007) Klimahüllen für 27 Waldbaumarten. AFZ Der Wald 23:1242–1245

    Google Scholar 

  • Koelling C, Ammer C (2006) Waldumbau unter den Zeichen des Klimawandels. AFZ Der Wald 20:1086–1089

    Google Scholar 

  • Lasch P, Lindner M, Erhard M, Suckow F, Wenzel A (2002) Regional impact assessment on forest structure and functions under climate change—the Brandenburg case study. For Ecol Manage 162(1):73–86

    Article  Google Scholar 

  • Leblanc DC (1990) Relationships between breast-height and whole-stem growth indices for red spruce on Whiteface Mountain, New York. Can J For Res 20:1399–1407

    Article  Google Scholar 

  • Legoff N, Ottorini JM (1993) Thinning and climate effects on growth of Beech (Fagus sylvatica) in experimental stands. For Ecol Manage 62(1–4):1–14

    Article  Google Scholar 

  • LGRB (2008) Mapserver des Landesamtes für Geologie, Rohstoffe und Bergbau am Regierungspräsidium Freiburg. http://www1.lgrb.uni-freiburg.de/comviewer

  • Lindner M (1999) Forest management strategies in the context of potential climate change. Forstwiss. Centralbl 118(1):1–13

    Article  Google Scholar 

  • Lindner M (2000) Developing adaptive forest management strategies to cope with climate change. Tree Physiol 20(5–6):299–307

    Google Scholar 

  • McDowell NG, Adams HD, Bailey JD, Hess M, Kolb TE (2006) Homeostatic maintenance of ponderosa pine gas exchange in response to stand density changes. Ecol Appl 16(3):1164–1182

    Article  PubMed  Google Scholar 

  • Meehl TA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997

    Article  CAS  PubMed  Google Scholar 

  • Misson L, Vincke C, Devillez F (2003) Frequency responses of radial growth series after different thinning intensities in Norway spruce (Picea abies (L.) karst.) stands. For Ecol Manage 177:51–63

    Article  Google Scholar 

  • MLR (1999) Richtlinie landesweiter Waldentwicklungstypen der Landesforstverwaltung Baden-Württemberg. Ministerium f. Ernährung u. Ländlichen Raum Baden-Württemberg (ed) 54 p

  • Piutti E, Cescatti A (1997) A quantitative analysis of the interactions between climatic response and intraspecific competition in European beech. Can J For Res 27:277–284

    Google Scholar 

  • Rolland C, Desplanque C, Michalet R, Schweingruber FH (2000) Extreme tree rings in spruce (Picea abies (L.) Karst.) and fir (Abies alba Mill.) stands in relation to climate, site, and space in the southern French and Italian alps. Arct Antarct Alp Res 32(1):1–13

    Article  Google Scholar 

  • Rothe A, Kreutzer K (1998) Wechselwirkungen zwischen Fichte und Buche im Mischbestand. AFZ Der Wald 15:784–787

    Google Scholar 

  • Saxe H, Cannell MGR, Johnsen B, Ryan MG, Vourlitis G (2001) Tree and forest functioning in response to global warming. New Phytol 149(3):369–399

    Article  CAS  Google Scholar 

  • Schröter H (1993) Waldschutzsituation 1993 in Baden-Württemberg. AFZ 7:314–319

    Google Scholar 

  • Seifert T, Müller-Stark G (2009) Impacts of fructification on biomass production and correlated genetic effects in Norway spruce (Picea abies [L.] Karst.). Eur J Forest Res 128:155–169

    Article  CAS  Google Scholar 

  • Seiler K-P, Gat JR (2007) Groundwater Recharge from run-off, infiltration and percolation. Water Science and Technology Library 55. Springer, 225 p

  • Spiecker H (2003) Silvicultural management in maintaining biodiversity and resistance of forests in Europe-temperate zone. J Environ Manage 67(1):55–65

    Article  PubMed  Google Scholar 

  • Utschig H, Bachmann M, Pretzsch P (2004) Das Trockenjahr 1976 bescherte langjährige Zuwachseinbrüche. LWFaktuell 43:17–18

    Google Scholar 

  • von Teuffel K, Heinrich B, Baumgarten M (2003) Present distribution of secondary Norway spruce in Europe. In: Spiecker H, Hansen J, Klimo E, Slovsgaard JP, Sterba H, von Teuffel K (eds). Norway spruce conversion—options and consequences. EFI Res Report 18:63–96

  • Whitehead D, Jarvis PG, Waring RH (1984) Stomatal conductance, transpiration, and resistance to water-uptake in a Pinus-sylvestris spacing experiment. Can J For Res 14(5):692–700

    Article  Google Scholar 

  • Wimmer R (2002) Wood anatomical features in tree rings as indicators of environmental change. Dendrochronologia 20(1):21–36

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Dr. S. Fink and J. Grüner, Chair of Forest Botany, Freiburg University for the preparation of thin sections and Prof. Jürgen Huss, the initiator of the Göggingen thinning experiment, for the provision of mensurational data. The discussion with Dr. Tiemo Kahl initiated the expansion of our study on tree-ring morphology at the cell level. Julia Sohn received a PhD scholarship of the Landesgraduiertenförderung Baden-Württemberg. Many thanks also to Mr. Alfred Rupf and Mr. Jürgen Abele from the “Hofkammer des Hauses Württemberg” for supporting the experiment over the years. Two anonymous reviewers provided constructive comments that helped to improve the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kohler.

Additional information

Communicated by C. Ammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohler, M., Sohn, J., Nägele, G. et al. Can drought tolerance of Norway spruce (Picea abies (L.) Karst.) be increased through thinning?. Eur J Forest Res 129, 1109–1118 (2010). https://doi.org/10.1007/s10342-010-0397-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-010-0397-9

Keywords

Navigation