Skip to main content

Advertisement

Log in

Analyzing the carbon dynamics of central European forests: comparison of Biome-BGC simulations with measurements

  • Original article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Biogeochemical models are often used for making projections of future carbon dynamics under scenarios of global change. The aim of this study was to assess the accuracy of the process-based biogeochemical model Biome-BGC for application in central European forests from the lowlands to upper treeline as a pre-requisite for environmental impact assessments. We analyzed model behavior along an altitudinal gradient across the alpine treeline, which provided insights on the sensitivity of simulated average carbon pools to changes in environmental factors. A second set of tests included medium-term (30 years) simulations of carbon fluxes, and a third set of tests focused on daily carbon and water fluxes. Model results were compared to aboveground biomass measurements, leaf area index recordings as well as net ecosystem exchange (NEE) and actual evapotranspiration (AET) measurements. The simulated medium-term forest growth agreed well with measured data. Also daily NEE fluxes were simulated adequately in most cases. Problems were detected when simulating ecosystems close to the upper timberline (overestimation of measured growth and pool sizes), and when simulating daily AET fluxes (overestimation of measured fluxes). The results showed that future applications of Biome-BGC could benefit much from an improvement of model algorithms (e.g., the Q10 model for respiration) as well as from a detailed analysis of the ecological significance of crucial parameters (e.g., the canopy water interception coefficient).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aubinet M Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv Ecol Res 30:113–175

    Article  Google Scholar 

  • Baldocchi D (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past present and future. Glob Change Biol 9:479–492

    Article  Google Scholar 

  • Band LE, Peterson DL, Running SW, Coughlan J Lammers R Dungan J, Nemani R (1991) Forest ecosystem processes at the watershed scale: basis for distributed simulation. Ecol Model 56:171–196

    Article  Google Scholar 

  • BFS (1992) Bodeneignungskarte der Schweiz. GEOSTAT Bundesamt für Statistik (BSF) Bern

  • Biome-BGC (2004) Biome-BGC: ecophysiological parameterization. http://www.ntsg.umt.edu/ecosystem_modeling/ BiomeBGC/bgc_epc.htm

  • Brassel P, Brändli U-B (eds) (1999) Schweizerisches Landesforstinventar: Ergebnisse der Zweitaufnahme 1993–1995. Paul Haupt Verlag, Bern, 442pp

  • BUWAL (1996) Critical loads of nitrogen and their exceedances. Swiss Agency for the Environment, Forests and Landscape, Environmental Series No. 275

  • Cairns DM, Malanson GP (1998) Environmental variables influencing the carbon balance at the alpine treeline: a modeling approach. J Veg Sci 9:676–692

    Article  Google Scholar 

  • Churkina G, Running S (2000) Investigating the balance between timber harvest and productivity of global coniferous forests under global change. Clim Change 47(1–2):167–191

    Article  Google Scholar 

  • Churkina G, Tenhunen J, Thornton P, Falge EM, Elbers JA, Erhard M, Grünwald T, Kowalski AS, Rannik Ü, Sprinz D (2003) Analyzing the ecosystem carbon dynamics of four European coniferous forests using a biogeochemistry model. Ecosystems 6:168–184

    Article  CAS  Google Scholar 

  • Cienciala E, Running SW, Lindroth A, Grelle A, Ryan MG (1998) Analysis of carbon and water fluxes from the NOPEX boreal forest: comparison of measurements with FOREST-BGC simulations. J Hydrol 212:79–94

    Article  Google Scholar 

  • Cramer W, Kicklighter DW, Bondeau A, Moore B III, Churkina G, Nemry B, Ruimy A, Schloss AL, The participants of thePotsdam NPP Model Intercomparison (1999) Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob Change Biol 5(Suppl 1):1–15

    Google Scholar 

  • Erhard M, Carter T, Mitchell T, Reginster I, Rounsevell M, Zaehle S (2005) Data and scenarios for assessing ecosystem vulnerability across Europe. Reg Environ Change (submitted)

  • Flemming, G (1995) Wald Wetter Klima: Einführung in die Forstmeteorologie. 3. überarbeitete Auflage. Deutscher Landwirtschaftsverlag Berlin, 136pp

  • Foley JA, Levis S, Costa MH, Cramer W, Pollard D (2000) Incorporating dynamic vegetation cover within global climate models. Ecol Appl 10(6):1620–1632

    Google Scholar 

  • Granier A (2003) Sarrebourg-Hesse, the Euroflux dataset 2000. In: Valentini R (ed) Fluxes of carbon, water and energy of European forests. Ecological Studies 163. Springer, Berlin Heidelberg New York, 270pp

  • Hefti R, Bühler, U (1986) Zustand und Gefährdung der Davoser Waldungen. Schlussbericht zum Schweizerischen MAB-Programm Nr. 23, 124pp

  • Holland EA, Dentener FJ, Braswell BH, Sulzman JM (1999) Contemporary and pre-industrial global reactive nitrogen budgets. Biogeochemistry 46(1–3):7–43

    CAS  Google Scholar 

  • Hunt ER, Martin FC, Running SW (1991) Simulating the effects of climatic variation on stem carbon accumulation of a ponderosa pine stand: comparison with annual growth increment data. Tree Physiol 9:161–171

    Google Scholar 

  • Hunt ER, Piper SC, Nemani R, Keeling CD, Otto RD, Running SW (1996) Global net carbon exchange and intra-annual atmospheric CO2 concentrations predicted by an ecosystem process model and three-dimensional atmospheric transport model. Glob Biogeochem Cycles 10:431–456

    Article  CAS  Google Scholar 

  • IGBP, The Terrestrial Carbon Working Group (1998) The terrestrial carbon cycle: implications for the Kyoto Protocol. Science 280(No. 5368):1393–1994

    Article  Google Scholar 

  • IPCC (2003) good practice guidance for land use, land-use change and forestry. http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.htm

  • Kaufmann E (2001) Estimation of standing timber, growth and cut. In: Brassel P, Lischke H (eds) Swiss National Forest Inventory: methods and models of the second assessment. Swiss Federal Research Institute (WSL), Birmensdorf, pp 162–196

    Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115(4):445–459

    Article  Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732

    Google Scholar 

  • Körner C, Schilcher B, Pelaez-Riedl S (1993) Vegetation und Treibhausgasproblematik. Eine Beurteilung der Situation in Österreich unter der besonderen Berücksichtigung der Kohlenstoffbilanz. In: ÖAW. Anthropogene Klimaänderungen. Mögliche Auswirkungen auf Österreich, Wien. Verlag Österreichischen Akademie Wissenschaften, pp 6.1–6.64

  • Krause M (1986) Die Böden von Davos - Ertagspotential, Belastbarkeit und Gefährdung durch Nutzungsänderungen. Schlussbericht zum Schweizerischen MAB-Programm Nr 18, 148pp

  • Law BE, Thornton PE, Irvine J, Anthoni PM, Van Tuyl S (2001) Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Glob Change Biol 7(7):755–777

    Article  Google Scholar 

  • Law BE, Sun OJ, Campbell J, Van Tuyl S, Thornton PE (2003) Changes in carbon storage and fluxes in a chronosequence of ponderosa pine. Glob Change Biol 9:510–524

    Article  Google Scholar 

  • Leuning R, Moncrieff J (1990) Eddy-covariance CO2 flux measurements using open- and closed-path CO2 analysers: corrections for analyser water vapour sensitivity and damping of fluctuations in air sampling tubes. Bound Layer Meteorol 53:63–76

    Article  Google Scholar 

  • Mahrer F (1989) Schweizerisches Landesforstinventar: Ergebnisse der Erstaufnahme 1983–1985. Paul Haupt Verlag, Bern, 375pp

  • Melillo JM, Borchers J, Chaney J, Fisher H, Fox S, Haxeltine A, Janetos A, Kicklighter DW, Kittel TGF, McGuire AD, McKeown R, Neilson R, Nemani R, Ojima DS, Painter T, Pan Y, Parton WJ, Pierce L, Pitelka L, Prentice C, Rizzo B, Rosenbloon NA, Running S, Schimel DS, Sitch S, Smith TM, Woodward I (1995) Vegetation/ecosystem modeling and analysis project: comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Glob Biogeochem Cycles 9(4):407–437

    Article  Google Scholar 

  • Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre Working Paper 55, July 2004. http://www.tyndall.ac.uk/publications/working_papers/wp55_summary.shtml

  • Moncrieff JB, Massheder JM, De Bruin H, Elbers J, Friborg T, Heusingveld B, Kabat P, Scott S, Soegaard H, Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J Hydrol 188–189:598–611

    Google Scholar 

  • Nemani R, Running SW (1989) Testing a theoretical climate-soil-leaf area hydrologic equilibrium of forests using satellite data and ecosystem simulation. Agric For Meteorol 44:245–260

    Article  Google Scholar 

  • Niklas KJ (1994) Plant allometry. The scaling of form and process. The University of Chicago Press, Chicago, 395pp

  • Ott E, Frehner M, Frey HU, Lüscher P (1997) Gebirgsnadelwälder: Ein praxisorientierter Leitfaden für eine standortgerechte Waldbehandlung. Haupt Verlag, Bern, 287pp

  • Perruchoud D, Kienast F, Kaufmann E, Bräker OU (1999) 20th century carbon budget of forest soils in the Alps. Ecosystems 2:320–337

    Article  CAS  Google Scholar 

  • Pretzsch H, Biber P, Durský J (2002) The single tree-based stand simulator SILVA: construction, application and evaluation. For Ecol Manag 162:3–21

    Article  Google Scholar 

  • Qi Y, Xu M, Wu J (2002) Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: nonlinearity begets surprises. Ecol Model 153(1–2):131–142

    Article  CAS  Google Scholar 

  • Riedo M, Gyalistras D, Fuhrer J (2001) Pasture responses to elevated temperature and doubled CO2 concentration: assessing the spatial pattern across an alpine lanscape. Clim Res 17:19–31

    Google Scholar 

  • Rihm A, Kurz D (2001) Deposition and critical loads of nitrogen in Switzerland. Water Air Soil Poll 130:1223–1228

    Article  Google Scholar 

  • Running SW (1994) Testing Forest-BGC ecosystem process simulations across a climatic gradient in Oregon. Ecol Appl 4(2):238–247

    Google Scholar 

  • Running SW, Coughlan JC (1988) A general model of forest ecosystem processes for regional applications. I. Hydrologic balance, canopy gas exchange and primary production processes. Ecol Model 42:125–154

    Article  CAS  Google Scholar 

  • Running SW, Gower ST (1991) FOREST-BGC, a general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets. Tree Physiol 9:147–160

    CAS  Google Scholar 

  • Running SW, Hunt ERJ (1993) Generalization of a forest ecosystem process model for other biomes, Biome-BGC, and an application for global scale models. In: Ehleringer JR, Field CB (eds) Scaling physiological processes: leaf to globe. Academic, San Diego, pp 141–158

    Google Scholar 

  • Running SW, Nemani RR, Hungerford RD (1987) Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis. Can J For Res 17(5):472–483

    Google Scholar 

  • Schmid S, Zingg A, Biber P, Bugmann H (2006) Validation of the forest growth model SILVA 2.2. with data from test sites along an elevational gradient in Switzerland. Eur J For Res 125:43–55

    Google Scholar 

  • Schumacher S (2004) The role of large-scale disturbances and climate for the dynamics of forested landscapes in the European Alps. PhD Thesis no. 15573, Swiss Federal Institute of Technology Zurich, Switzerland, 141pp

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9:161–185

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. Freeman, New York, 887pp

  • Tenhunen J, Schulze E-D (2003) Bayreuth, the Euroflux dataset 2000. In: Valentini R (ed) Fluxes of carbon, water and energy of European forests. Ecological studies 163. Springer, Berlin Heidelberg New York, p 270

    Google Scholar 

  • Theurillat J-P, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109

    Article  CAS  Google Scholar 

  • Thornton PE (1998) Regional ecosystem simulation: combining surface- and satellite-based observations to study linkages between terrestrial energy and mass budgets. PhD Thesis, University of Montana, Missoula, MT 280

  • Thornton PE, Running SW (1999) An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric For Meteorol 93:211–228

    Article  Google Scholar 

  • Thornton PE, Hasenauer H, White EW (2000) Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation: an application over complex terrain in Austria. Agric For Meteorol 104:255–271

    Article  Google Scholar 

  • Thornton PE, Law BE, Gholz HL, Clark KL, Falge E, Ellsworth DS, Goldstein AH, Monson RK, Hollinger D, Falk M, Chen J, Sparks JP (2002) Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agric For Meteorol 113:185–222

    Article  Google Scholar 

  • UNFCCC (1997) United Nations Framework Convention on Climate Change, 1997. Kyoto Protocol to the United Nations Framework Convention on Climate Change. Conference of the Parties, Kyoto, Japan. http://www.unfccc.int/resource/docs/convkp/kpeng.html

  • Valentini R (ed) (2003) Fluxes of carbon, water, and energy of European forests. Ecological Studies 163. Springer, Berlin Heidelberg New York, 270pp

  • Valentini R, Matteucci A, Dolman AJ, Schulze ED (2001) Respiration as the main determinant of carbon balance of European forests. Nature 404:861–865

    Article  CAS  Google Scholar 

  • Walder U (1983) Ausaperung und Vegetationsverteilung im Dischmatal. Mitt Eidg Forsch Anst Wald Schnee Landschaft 59:81–206

    Google Scholar 

  • White MA, Thornton PE, Running SW (1997) A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob Biogeochem Cycles 11(2):217–234

    Article  CAS  Google Scholar 

  • White JD, Running SW, Thornton PE, Keane RE, Ryan KC, Fagre DB, Key CH (1998) Assessing simulated ecosystem processes for climate variability research at Glacier National Park, USA. Ecol Appl 8(3):805–823

    Google Scholar 

  • White MA, Thornton PE, Running SW, Nemani R (2000) Parametrization and sensitivity analysis of the Biome-BGC terrestrial ecosystem model: net primary production controls. Earth Interact 4:1–85

    Article  Google Scholar 

  • Zierl B, Bugmann H (2006) Sensitivity of carbon cycling in the European Alps to changes of climate and land cover. Clim Change (submitted)

Download references

Acknowledgements

The research in this study has been made possible through funding by the Federal Office for the Environment (BAFU). We thank Niklaus Zimmermann (WSL) for helpful discussions on the model application. We are grateful to Andreas Zingg (WSL) for making available the data from the forest yield research plots, to Sabine Schumacher (ETHZ) for providing the biomass altitudinal gradient of the Dischma valley, and to Edgar Kaufmann (WSL) for information about historical management practices in the Dischma valley. We thank Peter Biber (TU München) for carefully reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Bugmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, S., Zierl, B. & Bugmann, H. Analyzing the carbon dynamics of central European forests: comparison of Biome-BGC simulations with measurements. Reg Environ Change 6, 167–180 (2006). https://doi.org/10.1007/s10113-006-0017-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-006-0017-x

Keywords

Navigation