Skip to main content
Log in

Effect of synthetical conditions, morphology, and crystallographic structure of MnO2 on its electrochemical behavior

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Manganese dioxide nanostructures have been synthesized by hydrothermal synthetical method. The crystallographic structure, morphology, and electrochemical properties of obtained MnO2 are examined by XRD, TEM, cyclic voltammetry, and galvanostatic charge–discharge tests. The results showed that the electrochemical properties of MnO2 were strongly affected by the crystallographic structure and morphology. The controlling crystallographic structure of MnO2 can be obtained by altering the molar ratio of KMnO4/MnSO4. The morphology was affected by the hydrothermal dwell time and temperature. The optimal synthetic conditions are as follows: the initial molar ratio of KMnO4/MnSO4 is 3:1, the reaction lasts 2 h at 120 °C, and the filling factor is 90%. In these prepared conditions, the MnO2 with the maximum specific capacitance of 259 F g−1 can be obtained. Prepared δ-MnO2 has a good layer structure and exhibits nanoflower morphology. The XRD studies show that the crystalline degree of this sample is lower, and the average grain size is about 8.3 nm. These results indicate that the product may have potential applications in areas such as electrode materials of supercapacitor and other new storing energy system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chu A, Braatz P (2002) J Power Sources 112:236

    Article  CAS  Google Scholar 

  2. Toupin M, Brousse T, Bélanger D (2002) Chem Mater 14:3946

    Article  CAS  Google Scholar 

  3. Xu C, Li B, Du H, Kang F, Zeng Y (2008) J Power Sources 180:664

    Article  CAS  Google Scholar 

  4. Subramanian V, Zhu H, Wei B (2008) Chem Phys Lett 453:242

    Article  CAS  Google Scholar 

  5. Yuan A, Wang X, Wang Y, Hu J (2009) Electrochim Acta 54:1021

    Article  CAS  Google Scholar 

  6. Zolfaghari A, Ataherian F, Ghaemi M, Gholami A (2007) Electrochim Acta 52:2806

    Article  CAS  Google Scholar 

  7. Yan D, Yan P, Cheng S, Chen J, Zhuo R, Feng J, Zhang G (2009) Cryst Growth Des 1:218

    Article  Google Scholar 

  8. Chen X, Li X, Jiang Y, Shi C, Li X (2005) Solid State Commun 136:94

    Article  CAS  Google Scholar 

  9. Subramanian V, Zhu H, Vojtal R, Ajayan PM, Wei B (2005) J Phys Chem B 109:20207

    Article  CAS  Google Scholar 

  10. Ding Y, Shen X, Gomez S, Luo H, Aindow M, Suib SL (2006) Adv Funct Mater 16:549

    Article  CAS  Google Scholar 

  11. Xu M, Kong L, Zhou W, Li H (2007) J Phys Chem C 111:19141

    Article  CAS  Google Scholar 

  12. Devaraj S, Munichandraiah N (2008) J Phys Chem C 112:4406

    Article  CAS  Google Scholar 

  13. Athoul L, Moser F, Dugas R, Crosnier O, Blanger D, Brousse T (2008) J Phys Chem C 112:7270

    Article  Google Scholar 

  14. Ni J, Lu W, Zhang L, Yue B, Shang X, Lv Y (2009) J Phys Chem C 113:54

    Article  CAS  Google Scholar 

  15. Chen R, Zavalij P, Whittingham MS (1996) Chem Meter 8:1275

    Article  CAS  Google Scholar 

  16. Chang JK, Huang CH, Lee MT, Tsai WT, Deng MJ, Sun IW (2009) Electrochim. Acta 54:3278

    Article  CAS  Google Scholar 

  17. Wang X, Li YD (2003) Chem Eur 9:300

    Article  Google Scholar 

  18. Beaudrouet E, Salle ALGL, Guyomard D (2009) Electrochim Acta 54:1240

    Article  CAS  Google Scholar 

  19. Wei W, Cui X, Chen W, Ivey DG (2009) J Power Sources 186:543

    Article  CAS  Google Scholar 

  20. Ghaemi M, Ataherian F, Zolfaghari A, Jafari SM (2008) Electrochim Acta 53:4607

    Article  CAS  Google Scholar 

  21. Pang SC, Anderson MA, Chapman TW (2000) J Electrochem Soc 147:444

    Article  CAS  Google Scholar 

  22. Kuo SL, Wu NL (2006) J Electrochem Soc 153:A1317

    Article  CAS  Google Scholar 

  23. Toupin M, Brousse T, Belanger D (2004) Chem Mater 16:3184

    Article  CAS  Google Scholar 

  24. Ma R, Bando Y, Zhang L, Sasaki T (2004) Adv Mater 16:918

    Article  CAS  Google Scholar 

  25. Reddy RN, Reddy RG (2003) J Power Sources 124:330

    Article  CAS  Google Scholar 

  26. Kijima N, Yasuda H, Sato T, Yoshimura Y (2001) J Solid State Chem 159:94

    Article  CAS  Google Scholar 

  27. Xiao TD, Strutt PR, Benaissa M, Chen H, Kear BH (1998) Nanostruct Mater 10:1051

    Article  CAS  Google Scholar 

  28. DeGuzman RN, Shen YF, Neth EJ, Suib SL, O’Young CL, Levine S, Newsam JM (1994) Chem Mater 6:815

    Article  CAS  Google Scholar 

  29. Luo J, Suib SL (1997) J Phys Chem B 101:10403

    Article  CAS  Google Scholar 

  30. Ghodbane O, Pascal JL, Favier F (2009) Appl Mater Interfaces 1(5):1130

    Article  CAS  Google Scholar 

  31. Tian N, Zhou ZY, Sun SG (2008) J Phys Chem C 112:19801

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support for this work was provided by Major State Basic Research Development Program (no. 2008CB617502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengde Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Huang, C. Effect of synthetical conditions, morphology, and crystallographic structure of MnO2 on its electrochemical behavior. J Solid State Electrochem 14, 1293–1301 (2010). https://doi.org/10.1007/s10008-009-0938-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0938-7

Keywords

Navigation