Skip to main content
Log in

Comparison of the intervertebral disc spaces between axial and anterior lean cervical traction

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

The insufficient investigations on the changes of spinal structures during traction prevent further exploring the possible therapeutic mechanism of cervical traction. A blind randomized crossover-design study was conducted to quantitatively compare the intervertebral disc spaces between axial and anterior lean cervical traction in sitting position. A total of 96 radiographic images from the baseline measurements, axial and anterior lean tractions in 32 asymptomatic subjects were digitized for further analysis. The intra- and inter-examiner reliabilities for measuring the intervertebral disc spaces were in good ranges (ICCs = 0.928–0.942). With the application of anterior lean traction, the statistical increases were detected both in anterior and in posterior disc spaces compared to the baseline (0.29 mm and 0.24 mm; both P < 0.01) and axial traction (0.16 mm and 0.35 mm; both P < 0.01). The greater intervertebral disc spaces obtained during anterior lean traction might be associated with the more even distribution of traction forces over the anterior and posterior neck structures. The neck extension moment through mandible that generally occurred in the axial traction could be counteracted by the downward force of head weight during anterior lean traction. This study quantitatively demonstrated that anterior lean traction in sitting position provided more intervertebral disc space enlargements in both anterior and posterior aspects than axial traction did. These findings may serve as a therapeutic reference when cervical traction is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akinbo SR, Noronha CC, Oke DA et al (2006) Effect of cervical traction on cardiovascular and selected ECG variables of cervical spondylosis patients using various weights. Niger Postgrad Med J 13:81–88

    CAS  PubMed  Google Scholar 

  2. Cleland JA, Whitman JM, Fritz JM et al (2005) Manual physical therapy, cervical traction, and strengthening exercises in patients with cervical radiculopathy: a case series. J Orthop Sports Phys Ther 35:802–811. doi:10.2519/jospt.2005.0201

    Article  PubMed  Google Scholar 

  3. Colachis SC Jr, Strohm BR (1965) Cervical traction: relationship of traction time to varied tractive force with constant angle of pull. Arch Phys Med Rehabil 46:815–819

    PubMed  Google Scholar 

  4. Deets D, Hands KL, Hopp SS (1977) Cervical traction. A comparison of sitting and supine positions. Phys Ther 57:255–261

    CAS  PubMed  Google Scholar 

  5. DeLacerda FG (1979) Techniques in the application of cervical traction: a review of research findings. J Okla State Med Assoc 72:79–82

    CAS  PubMed  Google Scholar 

  6. Demir T, Canakci V, Eltas A et al (2008) Effectiveness of mouthguards on tooth pain and mobility in cervical traction treatment. J Back Musculoskelet 21:91–98

    Google Scholar 

  7. Frobin W, Leivseth G, Biggemann M et al (2002) Vertebral height, disc height, posteroanterior displacement and dens-atlas gap in the cervical spine: precision measurement protocol and normal data. Clin Biomech (Bristol, Avon) 17:423–431. doi:10.1016/S0268-0033(02)00044-X

    Article  CAS  Google Scholar 

  8. Ghoname EA, Craig WF, White PF et al (1999) Percutaneous electrical nerve stimulation for low back pain: a randomized crossover study. JAMA 281:818–823. doi:10.1001/jama.281.9.818

    Article  CAS  PubMed  Google Scholar 

  9. Graham N, Gross AR, Goldsmith C (2006) Mechanical traction for mechanical neck disorders: a systematic review. J Rehabil Med 38:145–152. doi:10.1080/16501970600583029

    Article  PubMed  Google Scholar 

  10. Hattori M, Shirai Y, Aoki T (2002) Research on the effectiveness of intermittent cervical traction therapy, using short-latency somatosensory evoked potentials. J Orthop Sci 7:208–216. doi:10.1007/s007760200035

    Article  PubMed  Google Scholar 

  11. Hollander E, Allen A, Kwon J et al (1999) Clomipramine vs desipramine crossover trial in body dysmorphic disorder: selective efficacy of a serotonin reuptake inhibitor in imagined ugliness. Arch Gen Psychiatry 56:1033–1039. doi:10.1001/archpsyc.56.11.1033

    Article  CAS  PubMed  Google Scholar 

  12. Humphreys SC, Chase J, Patwardhan A et al (1998) Flexion and traction effect on C5-C6 foraminal space. Arch Phys Med Rehabil 79:1105–1109. doi:10.1016/S0003-9993(98)90179-4

    Article  CAS  PubMed  Google Scholar 

  13. Jette DU, Falkel JE, Trombly C (1985) Effect of intermittent, supine cervical traction on the myoelectric activity of the upper trapezius muscle in subjects with neck pain. Phys Ther 65:1173–1176

    CAS  PubMed  Google Scholar 

  14. Jones B, Kenward MG (1989) Design and analysis of cross-over trials: monographs on statistics and applied probability. Chapman & Hall, New York

    Google Scholar 

  15. Kitagawa T, Fujiwara A, Kobayashi N et al (2004) Morphologic changes in the cervical neural foramen due to flexion and extension: in vivo imaging study. Spine 29:2821–2825. doi:10.1097/01.brs.0000147741.11273.1c

    Article  PubMed  Google Scholar 

  16. Kolstad F, Myhr G, Kvistad KA et al (2005) Degeneration and height of cervical discs classified from MRI compared with precise height measurements from radiographs. Eur J Radiol 55:415–420. doi:10.1016/j.ejrad.2005.02.005

    Article  PubMed  Google Scholar 

  17. Krause M, Refshauge KM, Dessen M et al (2000) Lumbar spine traction: evaluation of effects and recommended application for treatment. Man Ther 5:72–81. doi:10.1054/math.2000.0235

    Article  CAS  PubMed  Google Scholar 

  18. Kroeber M, Unglaub F, Guehring T et al (2005) Effects of controlled dynamic disc distraction on degenerated intervertebral discs: an in vivo study on the rabbit lumbar spine model. Spine 30:181–187. doi:10.1097/01.brs.0000150487.17562.b1

    Article  PubMed  Google Scholar 

  19. Kroeber M, Unglaub F, Wang H et al (2002) New in vivo animal model to create intervertebral disc degeneration and to investigate effects of therapeutic strategies to stimulate disc regeneration. Spine 27:2684–2690. doi:10.1097/00007632-200212010-00007

    Article  PubMed  Google Scholar 

  20. Kwon BK, Song F, Morrison WB et al (2004) Morphologic evaluation of cervical spine anatomy with computed tomography: anterior cervical plate fixation considerations. J Spinal Disord Tech 17:102–107

    PubMed  Google Scholar 

  21. Lee RYW, Evans JH (2001) Loads in the lumbar spine during traction therapy. Aust J Physiother 47:102–108

    CAS  PubMed  Google Scholar 

  22. Liu J, Ebraheim NA, Sanford CG Jr et al (2008) Quantitative changes in the cervical neural foramen resulting from axial traction: in vivo imaging study. Spine J 8:619–623. doi:10.1016/j.spinee.2007.04.016

    Article  PubMed  Google Scholar 

  23. Lu J, Ebraheim NA, Huntoon M et al (2000) Cervical intervertebral disc space narrowing and size of intervertebral foramina. Clin Orthop Relat Res 370:259–264. doi:10.1097/00003086-200001000-00026

    Article  PubMed  Google Scholar 

  24. Moeti P, Marchetti G (2001) Clinical outcome from mechanical intermittent cervical traction for the treatment of cervical radiculopathy: a case series. J Orthop Sports Phys Ther 31:207–213

    CAS  PubMed  Google Scholar 

  25. Muggleton JM, Allen R (1998) Insights into the measurement of vertebral translation in the sagittal plane. Med Eng Phys 20:21–32. doi:10.1016/S1350-4533(97)00045-3

    Article  CAS  PubMed  Google Scholar 

  26. Olivero WC, Dulebohn SC (2002) Results of halter cervical traction for the treatment of cervical radiculopathy: retrospective review of 81 patients. Neurosurg Focus 12:ECP1. doi:10.3171/foc.2002.12.2.4

    Article  PubMed  Google Scholar 

  27. Onel D, Tuzlaci M, Sari H et al (1989) Computed tomographic investigation of the effect of traction on lumbar disc herniations. Spine 14:82–90. doi:10.1097/00007632-198901000-00017

    Article  CAS  PubMed  Google Scholar 

  28. Ozturk B, Gunduz OH, Ozoran K et al (2006) Effect of continuous lumbar traction on the size of herniated disc material in lumbar disc herniation. Rheumatol Int 26:622–626. doi:10.1007/s00296-005-0035-x

    Article  PubMed  Google Scholar 

  29. Pfeiffer M, Geisel T (2003) Analysis of a computer-assisted technique for measuring the lumbar spine on radiographs: correlation of two methods. Acad Radiol 10:275–282. doi:10.1016/S1076-6332(03)80101-0

    Article  PubMed  Google Scholar 

  30. Pio A, Rendina M, Benazzo F et al (1994) The statics of cervical traction. J Spinal Disord 7:337–342. doi:10.1097/00002517-199408000-00008

    Article  CAS  PubMed  Google Scholar 

  31. Reitman CA, Mauro KM, Nguyen L et al (2004) Intervertebral motion between flexion and extension in asymptomatic individuals. Spine 29:2832–2843. doi:10.1097/01.brs.0000147740.69525.58

    Article  PubMed  Google Scholar 

  32. Saunders HD (1983) Use of spinal traction in the treatment of neck and back conditions. Clin Orthop Relat Res 179:31–38. doi:10.1097/00003086-198310000-00006

    Article  PubMed  Google Scholar 

  33. Sohn HM, You JW, Lee JY (2004) The relationship between disc degeneration and morphologic changes in the intervertebral foramen of the cervical spine: a cadaveric MRI and CT study. J Korean Med Sci 19:101–106

    Article  PubMed  Google Scholar 

  34. Vaughn HT, Having KM et al (2006) Radiographic analysis of intervertebral separation with a 0 degrees and 30 degrees rope angle using the Saunders cervical traction device. Spine 31:E39–E43. doi:10.1097/01.brs.0000194840.42792.f2

    Article  PubMed  Google Scholar 

  35. Wang B, Liu H, Wang H et al (2006) Segmental instability in cervical spondylotic myelopathy with severe disc degeneration. Spine 31:1327–1331. doi:10.1097/01.brs.0000218508.86258.d4

    Article  PubMed  Google Scholar 

  36. Wong AM, Lee MY, Chang WH et al (1997) Clinical trial of a cervical traction modality with electromyographic biofeedback. Am J Phys Med Rehabil 76:19–25. doi:10.1097/00002060-199701000-00005

    Article  CAS  PubMed  Google Scholar 

  37. Wong AM, Leong CP, Chen CM (1992) The traction angle and cervical intervertebral separation. Spine 17:136–138. doi:10.1097/00007632-199202000-00004

    Article  CAS  PubMed  Google Scholar 

  38. Wu SK, Kuo LC, Lan HC et al (2007) The quantitative measurements of the intervertebral angulation and translation during cervical flexion and extension. Eur Spine J 16:1435–1444. doi:10.1007/s00586-007-0372-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

No funds were received in support of this study.

Conflict of interest statement

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyi-Kuen Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, CT., Tsai, SW., Chen, CJ. et al. Comparison of the intervertebral disc spaces between axial and anterior lean cervical traction. Eur Spine J 18, 1669–1676 (2009). https://doi.org/10.1007/s00586-009-1072-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-009-1072-z

Keywords

Navigation