Skip to main content
Log in

Colforsin-induced vasodilation in chronic hypoxic pulmonary hypertension in rats

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

Colforsin, a water-soluble forskolin derivative, directly activates adenylate cyclase and thereby increases the 3′,5′-cyclic adenosine monophosphate (cAMP) level in vascular smooth muscle cells. In this study, we investigated the vasodilatory action of colforsin on structurally remodeled pulmonary arteries from rats with pulmonary hypertension (PH).

Methods

A total of 32 rats were subjected to hypobaric hypoxia (380 mmHg, 10% oxygen) for 10 days to induce chronic hypoxic PH, while 39 rats were kept in room air. Changes in isometric force were recorded in endothelium-intact (+E) and -denuded (−E) pulmonary arteries from the PH and control (non-PH) rats.

Results

Colforsin-induced vasodilation was impaired in both +E and −E arteries from PH rats compared with their respective controls. Endothelial removal did not influence colforsin-induced vasodilation in the arteries from control rats, but attenuated it in arteries from PH rats. The inhibition of nitric oxide (NO) synthase did not influence colforsin-induced vasodilation in +E arteries from controls, but attenuated it in +E arteries from PH rats, shifting its concentration–response curve closer to that of −E arteries from PH rats. Vasodilation induced by 8-bromo-cAMP (a cell-permeable cAMP analog) was also impaired in −E arteries from PH rats, but not in +E arteries from PH rats, compared with their respective controls.

Conclusions

cAMP-mediated vasodilatory responses without β-adrenergic receptor activation are impaired in structurally remodeled pulmonary arteries from PH rats. In these arteries, endothelial cells presumably play a compensatory role against the impaired cAMP-mediated vasodilatory response by releasing NO (and thereby attenuating the impairment). The results suggest that colforsin could be effective in the treatment of PH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cogolludo A, Moreno L, Villamor E. Mechanisms controlling vascular tone in pulmonary arterial hypertension: implication for vasodilator therapy. Pharmacology. 2007;79:65–75.

    Article  CAS  PubMed  Google Scholar 

  2. Fullerton DA, Agrafojo J, McIntyre RC. Pulmonary vascular smooth muscle relaxation by cAMP-mediated pathways. J Surg Res. 1996;61:444–8.

    Article  CAS  PubMed  Google Scholar 

  3. Rabinovitch M, Keane JF, Norwood WI. Vascular structure in lung tissue obtained at biopsy correlated with pulmonary hemodynamic findings after repair of congenital heart defects. Circulation. 1984;69:655–67.

    CAS  PubMed  Google Scholar 

  4. Maruyama J, Maruyama K. Impaired nitric oxide-dependent responses and their recovery in hypertensive pulmonary arteries of rats. Am J Physiol. 1994;266:H2476–88.

    CAS  PubMed  Google Scholar 

  5. Fried R, Reid L. The effect of isoproterenol on the development and recovery of hypoxic pulmonary hypertension. Am J Pathol. 1985;121:102–11.

    CAS  PubMed  Google Scholar 

  6. Maruyama K, Maruyama J, Yokochi A, Muneyuki M, Miyasaka K. Vasodilatory effects of ketamine on pulmonary arteries in rats with chronic hypoxic pulmonary hypertension. Anesth Analg. 1995;80:786–92.

    Article  CAS  PubMed  Google Scholar 

  7. Humbert M, Sitbon O, Simonneau G. Treatment of pulmonary arterial hypertension. N Engl J Med. 2004;351:1425–36.

    Article  CAS  PubMed  Google Scholar 

  8. Shaul PW, Muntz KH, DeBelts M, Maximilian B. Effects of prolonged hypoxia on adenylate cyclase activity and β-adrenergic receptors in pulmonary and systemic arteries of rat. Circ Res. 1990;66:1526–34.

    CAS  PubMed  Google Scholar 

  9. Voelkel NF, Hegstrand L, Reeves JT, McMurtry IF, Molinoff PB. Effects of hypoxia on density of β-adrenergic receptors. J Appl Physiol. 1981;50:363–6.

    CAS  PubMed  Google Scholar 

  10. Kang KB, Zypp A, Majewski H. Endogenous nitric oxide attenuates beta-adrenoceptor-mediated relaxation in rat aorta. Clin Exp Pharmacol Physiol. 2007;34:95–101.

    Article  CAS  PubMed  Google Scholar 

  11. Iranami H, Hatano Y, Tsukiyama Y, Maeda H, Mizumoto K. Beta-adrenoceptor agonist evokes a nitric oxide-cGMP relaxation mechanism modulated by adenylyl cyclase in rat aorta. Anesthesiology. 1996;85:1129–38.

    Article  CAS  PubMed  Google Scholar 

  12. Queen LR, Ji Y, Xu B, Young L, Yao K, Wyatt AW, Rowlands DJ, Siow RCM, Mann GE, Ferro A. Mechanisms underlying beta2-adrenoceptor-mediated nitric oxide generation by human umbilical vein endothelial cells. J Physiol. 2006;576:585–94.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang X, Hintze TH. cAMP signal transduction cascade, a novel pathway for the regulation of endothelial nitric oxide production in coronary blood vessels. Arterioscler Thromb Vasc Biol. 2001;21:797–803.

    CAS  PubMed  Google Scholar 

  14. Yoneyama M, Sugiyama A, Satoh Y, Takahara A, Nakamura Y, Hashimoto K. Cardiovascular and adenylate cyclase stimulating effects of colforsin daropate, a water-soluble forskolin derivative, compared with those of isoproterenol, dopamine and dobutamine. Circ J. 2002;66:1150–4.

    Article  CAS  PubMed  Google Scholar 

  15. Iranami H, Okamoto K, Kimoto Y, Maeda H, Kakutani T, Hatano Y. Use of corfolsin dalopate following cardiac surgery in a neonate. Anesthesiology. 2002;97:503–4.

    Article  PubMed  Google Scholar 

  16. Ohta S, Shinke T, Hata K, Takaoka H, Shite J, Kijima Y, Murata T, Yoshikawa R, Masai H, Hirata K, Yokoyma M. Inhibition of endogenous nitric oxide synthase augments contractile response to adenylyl cyclase stimulation without altering mechanical efficiency in patients with idiopathic dilated cardiomyopathy. Circ J. 2007;71:1268–73.

    Article  CAS  PubMed  Google Scholar 

  17. Hirota K, Yoshioka H, Kabara S, Koizumi Y, Abe H, Matsuki A. Spasmolytic effects of colforsin daropate on serotonin-induced pulmonary hypertension and bronchoconstriction in dogs. Acta Anaesthesiol Scand. 2002;46:297–302.

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki S, Ito O, Sayama T, Yamaguchi S, Goto K, Sasaki K. Intraarterial injection of colforsin daropate hydrochloride for the treatment of vasospasm after aneurismal subarachnoid hemorrhage: preliminary report of two cases. Neuroradiology. 2006;48:50–3.

    Article  CAS  PubMed  Google Scholar 

  19. Uchida M, Iida H, Iida M, Kumazawa M, Sumi K, Takenaka M, Dohi S. Both milrinone and colforsin daropate attenuate the sustained pial arteriolar constriction seen after unclamping of abdominal aortic cross-clamp in rabbits. Anesth Analg. 2005;101:9–16.

    Article  CAS  PubMed  Google Scholar 

  20. Hayashida N, Teshima H, Tayama E, Chihara S, Enomoto N, Kawara T, Aoyagi S. Influence of colforsin daropate hydrochloride on internal mammary artery grafts. Circ J. 2002;66:372–6.

    Article  CAS  PubMed  Google Scholar 

  21. Ogata J, Minami K, Segawa K, Uezono Y, Shiraishi M, Yamamoto C, Sata T, Sung-The K, Shigematsu A. A forskolin derivative, colforsin daropate hydrochloride, inhibits the decrease in cortical renal blood flow induced by noradrenalline or angiotension II in anesthetized rats. Nephron Physiol. 2004;96:59–64.

    Article  Google Scholar 

  22. Maruyama J, Jiang BH, Maruyama K, Takata M, Miyasaka K. Prolonged nitric oxide inhalation during recovery from chronic hypoxia does not decrease nitric oxide-dependent relaxation in pulmonary arteries. Chest. 2004;126:1919–25.

    Article  CAS  PubMed  Google Scholar 

  23. Vorndran C, Minta A, Poenie M. New fluorescent calcium indicators designed for cytosolic retention or measuring calcium near membrane. Biophys J. 1995;69:2112–24.

    Article  CAS  PubMed  Google Scholar 

  24. Itoh H, Kusagawa M, Shimomura A, Suga T, Ito M, Konishi T, Nakano T. Ca2+-dependent and Ca2+-independent vasorelaxation induced by cardiotonic phosphodiesterase inhibitors. Eur J Pharmacol. 1993;240:57–66.

    Article  CAS  PubMed  Google Scholar 

  25. Sato K, Ozaki H, Karaki H. Change in cytosolic calcium level in vascular smooth muscle strip measured simultaneously with contraction using fluorescent calcium indicator fura 2. J Pharmacol Exp Ther. 1988;246:294–300.

    CAS  PubMed  Google Scholar 

  26. Toyoshima H, Nasa Y, Hashizume Y, Koseki Y, Isayama Y, Kohsaka Y, Yamada T, Takeo S. Modulation of cAMP-mediated vasorelaxation by endothelial nitric oxide and basal cGMP in vascular smooth muscle. J Cardiovasc Pharmacol. 1998;32:543–51.

    Article  CAS  PubMed  Google Scholar 

  27. Barman SA, Zhu S, Han G, White RE. cAMP activates BKCa channels in pulmonary arterial smooth muscle via cGMP-dependent protein kinase. Am J Physiol Lung Cell Mol Physiol. 2003;284:L1004–11.

    CAS  PubMed  Google Scholar 

  28. Cornwell TL, Arnold E, Boerth NJ, Lincoln TM. Inhibition of smooth muscle cell growth by nitric oxide and activation of cAMP-dependent protein kinase by cGMP. Am J Physiol. 1994;267:C1405–13.

    CAS  PubMed  Google Scholar 

  29. Murray F, MacLean MR, Pyne NJ. Increased expression of the cGMP-inhibited cAMP-specific (PDE3) and cGMP binding cGMP-specific (PDE5) phosphodiesterases in models of pulmonary hypertension. Br J Pharmacol. 2002;137:1187–94.

    Article  CAS  PubMed  Google Scholar 

  30. Pelligrino DA, Wang Q. Cyclic nucleotide crosstalk and the regulation of cerebral vasodilation. Prog Neurobiol. 1998;56:1–18.

    Article  CAS  PubMed  Google Scholar 

  31. Zellers TM, Wu YQ, McCormick J, Vanhoutte PM. Prostacyclin-induced relaxations of small porcine pulmonary arteries are enhanced by the basal release of endothelium-derived nitric oxide through an effect on cyclic GMP-inhibited-cyclic AMP phosphodiesterase. Acta Pharmacol Sin. 2000;21:131–8.

    CAS  PubMed  Google Scholar 

  32. Iwatani Y, Kosugi K, Isobe-Oku S, Atagi S, Kitamura Y, Kawasaki H. Endothelium removal augments endothelium-independent vasodilatation in rat mesenteric vascular bed. Br J Pharmacol. 2008;154:32–40.

    Article  CAS  PubMed  Google Scholar 

  33. Rodman DM. Chronic hypoxia selectively augments rat pulmonary artery Ca2+ and K+ channel-mediated relaxation. Am J Physiol. 1992;263:L88–94.

    CAS  PubMed  Google Scholar 

  34. Le Cras TD, Xue C, Rengasamy A, Johns RA. Chronic hypoxia upregulates endothelial and inducible NO synthase gene and protein expression in rat lung. Am J Physiol. 1996;270:L164–70.

    CAS  PubMed  Google Scholar 

  35. Resta TC, Gonzales YJ, Dail WG, Sanders TC, Walker BR. Selective upregulation of arterial endothelial nitric oxide synthase in pulmonary hypertension. Am J Physiol. 1997;272:H806–13.

    CAS  PubMed  Google Scholar 

  36. Doroma Y, Hanaoka M, Ota M, Katsuyama Y, Koizumi T, Fujimoto K, Kobayashi T, Kubo K. Positive association of the endothelial nitric oxide synthase gene polymorphisms with high-altitude pulmonary edema. Circulation. 2002;106:826–30.

    Article  Google Scholar 

  37. Ito S, Suzuki S, Itoh T. Effects of a water-soluble forskolin derivative (NKH477) and a membrane-permeable cyclic AMP analogue on noradrenaline-induced Ca2+ mobilization in smooth muscle of rabbit mesenteric artery. Br J Pharmacol. 1993;110:117–25.

    Google Scholar 

Download references

Acknowledgments

Supported in part by grants (14370484, 16390449) from the Ministry of Education, Science, and Culture of Japan. Dr. Jiang was supported by a FY2002 JSPS (Japan Society for the Promotion of Science) postdoctoral fellowship for foreign researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayumu Yokochi.

About this article

Cite this article

Yokochi, A., Itoh, H., Maruyama, J. et al. Colforsin-induced vasodilation in chronic hypoxic pulmonary hypertension in rats. J Anesth 24, 432–440 (2010). https://doi.org/10.1007/s00540-010-0912-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-010-0912-7

Keywords

Navigation