Skip to main content
Log in

Levels, sources and risk assessment of trace elements in wetland soils of a typical shallow freshwater lake, China

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The deteriorating environmental conditions of Baiyangdian Lake have caused a wide public concern. Surface soils (0–20 cm) were collected at 10 sites of reed wetlands in raised fields of the Baiyangdian Lake. They were analyzed for total contents of trace elements to investigate their distribution and pollution levels in wetland soils of this region. Results showed that the mean contents of As, Cd, Cr, Cu, Ni, Pb and Zn all exceeded their environmental background values of Hebei Province and had various degree of spatial variations. As, Cr and Ni contents exceeded considerably the probable effect levels. Multivariate analysis indicated that Cr, Cd, Ni, Cu, Pb and Zn had common sources and As had different sources for these trace elements. The average toxic units (TU) of trace elements in the Baiyangdian Lake followed the order As > Ni > Cr > Zn > Pb > Cu > Cd. As, Ni and Cr made the higher contributions to ΣTUs (i.e., 41.3 ± 7.2, 21.8 ± 4.1 and 16.2 ± 2.8 %, respectively). The potential ecological risk index of Cd \( \left( {E_{r}^{i} } \right) \) was 213.44, which was the highest value in the Baiyangdian Lake. The other trace elements had lower potential ecological risk indices (<40), following the order Cd > As > Cu > Pb = Ni > Cr > Zn. Potential toxicity response indices (RI) of trace elements for the whole lake region was 269.81, with a moderate potential toxicity response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdu N, Abdulkadir A, Agbenin J, Buerkert A (2010) Vertical distribution of heavy metals in wastewater-irrigated vegetable garden soils of three West African cities. Nutr Cycl Agroecosyst 89:387–397

    Article  Google Scholar 

  • An Y, Kampbell DH (2003) Total, dissolved, and bioavailable metals at Lake Texoma marinas. Environ Pollut 122(2):253–259

    Article  CAS  Google Scholar 

  • Bai J, Cui B, Wang Q, Gao H, Ding Q (2009) Assessment of heavy metal contamination of roadside soils in Southwest China. Stoch Environ Res Risk Assess 23:341–347

    Article  Google Scholar 

  • Bai J, Cui B, Yang Z, Xu X, Ding Q, Gao H (2010a) Heavy metal contamination of cultivated wetland soils along a typical plateau lake from southwest China. Environ Earth Sci 59:1781–1788

    Article  CAS  Google Scholar 

  • Bai J, Yang Z, Cui B, Gao H, Ding Q (2010b) Some heavy metals distribution in wetland soils under different land use types along a typical plateau lake, China. Soil Tillage Res 106:344–348

    Article  Google Scholar 

  • Bai J, Cui B, Chen B, Zhang K, Deng W, Gao H, Xiao R (2011a) Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecol Model 222(2):301–306

    Article  CAS  Google Scholar 

  • Bai J, Huang L, Yan D, Wang Q, Gao H, Xiao R, Huang C (2011b) Contamination characteristics of heavy metals in wetland soils along a tidal ditch of the Yellow River Estuary, China. Stoch Environ Res Risk Assess 25:671–676

    Article  Google Scholar 

  • Bai J, Xiao R, Cui B, Zhang K, Wang Q, Liu X, Gao H, Huang L (2011c) Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Estuary, South China. Environ Pollut 159:817–824

    Article  CAS  Google Scholar 

  • Baruthio F (1992) Toxic effects of chromium and its compounds. Biol Trace Elem Res 32(1):145–153

    Article  CAS  Google Scholar 

  • Brumelis G, Lapina L, Nikodemus O, Tabors G (2002) Use of the O horizon of forest soils in monitoring metal deposition in Latvia. Water Air Soil Pollut 135:291–309

    Article  CAS  Google Scholar 

  • Bustamante P, Bocher P, Cherel Y, Miramand P, Caurant F (2003) Distribution of trace elements in the tissues of benthic and pelagic fish from the Kerguelen Islands. Sci Total Environ 313:25–39

    Article  CAS  Google Scholar 

  • Cambardella CA, Moorman TB, Novak JM (1994) Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils. Soil Sci Soc Am J 58:1501–1511

    Article  Google Scholar 

  • Cao H, Luan Z, Wang J, Zhang X (2009) Potential ecological risk of cadmium, lead and arsenic in agricultural black soil in Jilin Province, China. Stoch Environ Res Risk Assess 23:57–64

    Article  Google Scholar 

  • CCME (1995) Protocol for the derivation of Canadian sediment quality guidelines for the protection of aquatic life. Canadian Council of Ministers for the Environment, Report CCME EPC-98E

  • Chen C, Pickhardt P, Xu M, Folt C (2008) Mercury and arsenic bioaccumulation and eutrophication in Baiyangdian Lake, China. Water Air Soil Pollut 190:115–127

    Article  CAS  Google Scholar 

  • Chen Y, Wang J, Shi G, Sun X, Chen Z, Xu S (2011) Human health risk assessment of lead pollution in atmospheric deposition in Baoshan District, Shanghai. Environ Geochem Health 33(6):515–523

    Article  CAS  Google Scholar 

  • Chi Q, Zhu G, Alan L (2007) Bioaccumulation of heavy metals in fishes from Taihu Lake, China. J Environ Sci China 19:1500–1504

    Article  CAS  Google Scholar 

  • China Environmental Monitoring Station (1990) Chinese soil background values of elements

  • Dai S (2001) Environmental chemistry. Beijing, Higher Education Press, Beijing

  • Frickel S, Elliott JR (2008) Tracking industrial land use conversions: a new approach for studying relict waste and urban development. Organ Environ 21:128–147

    Article  Google Scholar 

  • Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9(3):303–321

    Article  CAS  Google Scholar 

  • Gonzalez ZI, Krachler M, Cheburkin AK, Shotyk W (2006) Spatial distribution of natural enrichments of arsenic, selenium, and uranium in a minerotrophic peatland, Gola diLago, Canton Ticino, Switzerland. Environ Sci Technol 40:6568–6574

    Article  Google Scholar 

  • Guo W, Liu X, Liu Z, Li G (2010) Pollution and potential ecological risk evaluation of heavy metals in the sediments around Dongjiang Harbor, Tianjin. Int Soc Environ Inf Sci 2:729–736

    Google Scholar 

  • Håkanson L (1980) An ecological risk index for aquatic pollution control: a sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  • Han Y, Du P, Cao J, Posmentier ES (2006) Multivariate analysis of heavy metal contamination in urban dusts of Xi′an, Central China. Sci Total Environ 355:176–186

    Article  CAS  Google Scholar 

  • Horvat T, Vidakovic-Cifrek Z, Orescanin V, Tkalec M, Pevalek-Kozlina B (2007) Toxicity assessment of heavy metal mixtures by Lemna minor L. Sci Total Environ 384:229–238

    Article  CAS  Google Scholar 

  • Jefferies DJ, Freestone P (1984) Chemical analysis of some coarse fish from a Suffolk River carried out as part of the preparation for the first release of captive-bred otters. J Otter Trust 18:17–22

    Google Scholar 

  • Kabir MI, Lee H, Kim G, Jun T (2011) Correlation assessment and monitoring of the potential pollutants in the surface sediments of Pyeongchang river, Korea. Int J Sediment Res 26(2):152–162

    Article  Google Scholar 

  • Kashem MA, Singh BR (2001) Metal availability in contaminated soils: II. Uptake of Cd, Ni and Zn in rice plants grown under flooded culture with organic matter addition. Nutr Cycl Agroecosyst 61:257–266

    Article  CAS  Google Scholar 

  • Kim D, Yu S, Lee E (2010) Effects of blood lead concentration on intelligence and personality in school children. Mol Cell Toxicol 6(1):19–23

    Article  CAS  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using immobilization. Waste Manage 28:215–225

    Article  CAS  Google Scholar 

  • Laing GD, Meyer BD, Meers E, Lesage E, Moortel AVD, Tack FMG, Verloo MG (2008) Metal accumulation in intertidal marshes: role of sulphide precipitation. Wetlands 28:735–746

    Article  Google Scholar 

  • Li A, Xin H (1996) Baiyangdian annals. Chinese Bookstore Press, China

  • Liu X, Xu M, Yang Z, Sun T, Cui B, Wang L, Wu D (2010) Sources and risk of polycyclic aromatic hydrocarbons in Baiyangdian Lake, North China. J Environ Sci Health 45:413–420

    Google Scholar 

  • MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31

    Article  CAS  Google Scholar 

  • Marschner B, Kalbitz K (2003) Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma 113:211–235

    Article  CAS  Google Scholar 

  • Mench M, Bussiere S, Boisson J, Castaing E, Vangronsveld J, Ruttents A, Koe TD, Bleeker P, Assuncao A, Manceau A (2003) Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatments. Plant Soil 249:187–202

    Article  CAS  Google Scholar 

  • Mico C, Recatala L, Peris M, Sanchez J (2006) Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 65:863–872

    Article  CAS  Google Scholar 

  • NSMMC (National Standard Material Management Committee) (2010) Standard material directory of P.R.C. Chinese Measuring Press, Beijing

  • Opfer SE, Farver JR, Miner JG, Krieger K (2011) Heavy metals in sediments and uptake by burrowing mayflies in western Lake Erie basin. J Great Lakes Res 37(1):1–8

    Article  CAS  Google Scholar 

  • Öztürk M, Özözen G, Minareci O, Minareci E (2009) Determination of heavy metals in fish, water and sediments of Avsar dam lake in Turkey. Iran J Environ Health 6(2):73–80

    Google Scholar 

  • Panda UCUY, Rath P, Bramha S, Sahu KC (2010) Application of factor analysis in geochemical speciation of heavy metals in the sediments of a Lake System-Chilika (India): a case study. J Coast Res 26:860–868

    Article  CAS  Google Scholar 

  • Paterson E, Sanka M, Clark L (1999) Urban soil as pollutant sinks—a case study from Aberdeen, Scotland. Appl Geochem 11:129–131

    Article  Google Scholar 

  • Pedersen F, Bjørnestad E, Andersen HV, Kjø HJ, Poll C (1998) Characterization of sediments from Copenhagen Harbour by use of biotests. Water Sci Technol 37:233–240

    CAS  Google Scholar 

  • Pham NTT, Pulkownik A, Buckney RT (2007) Assessment of heavy metals in sediments and aquatic organisms in West Lake (Ho Tay), Hanoi, Vietnam. Lakes Reserv Res Manage 12(4):285–294

    Article  CAS  Google Scholar 

  • Qu W, Dickman M, Wang S (2001) Multivariate analysis of heavy metal and nutrient concentrations in sediments of Taihu Lake, China. Hydrobiologia 450:83–89

    Article  CAS  Google Scholar 

  • Ren H, Cui B, Bai J, Dong S, Hu B, Zhao H (2008) Distribution of heavy metal in paddy soil of Hani Terrace core zone and assessment on its potential ecological risk. Acta Ecol Sinica 28:1625–1634

    CAS  Google Scholar 

  • Sakan SM, Đorđević DS, Manojlović DD, Predrag PS (2009) Assessment of heavy metal pollutants accumulation in the Tisza river sediments. J Environ Manage 90:3382–3390

    Article  CAS  Google Scholar 

  • Satarug S, Moore MR (2004) Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ Health Perspect 112(10):1099–1103

    Article  CAS  Google Scholar 

  • SEPAC (State Environmental Protection Administration of China) (2004) The technical specification for soil environmental monitoring. HJ/T 166–2004. Environmental Press of China, Beijing (in Chinese)

  • Shao X, Wu M, Jiang K (2007) Distribution and ecological risk assessment of heavy metal elements in soils of Xixi wetland. Wetl Sci 5:253–259

    Google Scholar 

  • Smith SL, MacDonald DD, Keenleyside KA, Ingersoll CG, Field LJ (1996) A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. J Great Lakes Res 22:624–638

    Article  CAS  Google Scholar 

  • Stoeva N, Bineva T (2003) Oxidative changes and photosynthesis in Oat plants grown in As-contaminated soil. Bulg J Plant Physiol 29(1–2):87–95

    Google Scholar 

  • Su L, Liu J, Christensen P (2011) Spatial distribution and ecological risk assessment of metals in sediments of Baiyangdian wetland ecosystem. Ecotoxicology 20(5):1107–1116

    Article  CAS  Google Scholar 

  • Sun Y, Zhou Q, Xie X, Liu R (2010) Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. J Hazard Mater 174:455–462

    Article  CAS  Google Scholar 

  • Szymanowska A, Samecka-Cymerman A, Kempers AJ (1999) Heavy metals in three lakes in West Poland. Ecotoxicol Environ Saf 43(1):21–29

    Article  CAS  Google Scholar 

  • Tam NFY, Wong YS (1996) Retention and distribution of heavy metals in mangrove soils receiving wastewater. Environ Pollut 94:283–291

    Article  CAS  Google Scholar 

  • Türkmen A, Türkmen M, Tepe Y, Akyurt I (2005) Heavy metals in three commercially valuable fish species from Iskenderun Bay, Northern East Mediterranean Sea. Turk Food Chem 91:167–172

    Article  Google Scholar 

  • Uluturhan E, Kucuksezgin F (2007) Heavy metal contaminants in Red Pandora (Pagellus erythrinus) tissues from the Eastern Aegean Sea, Turkey. Water Res 41:1185–1192

    Article  CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method and a proposed modification of the chromic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Wang W, Wang D, Yin C (2002) A field study on the hydrochemistry of land/inland water ecotones with reed domination. Acta Hydroch Hydrob 30:117–127

    Article  Google Scholar 

  • Wang L, Yin C, Wang W (2010) Sedimentary enzyme kinetics of land/water ecotones with reed domination. Clean Soil Air Water 38:194–201

    Article  CAS  Google Scholar 

  • Wise S, JP, Payne R, Wise SS, LaCerte C, Wise J, Gianios Jr. C, Douglas Thompson W, Perkins C, Zheng T, Zhu C, Benedict L, Kerr I (2009) A global assessment of chromium pollution using sperm whales (Physeter macrocephalus) as an indicator species. Chemosphere 75(11):1461–1467

  • Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174(1–3):1–8

    Article  CAS  Google Scholar 

  • Xu Q, Shi G (2000) The toxic effects of single Cd and interaction of Cd with Zn on some physiological index of [Oenanthe javanica (Blume) DC]. J Nanjing Normal University (Natural Science) 23(4):97–100 (In Chinese with English abstract)

    CAS  Google Scholar 

  • Xu M, Zhu J, Huang Y, Gao Y, Zhang S, Tang Y, Yin C, Wang Z (1998) The ecological degradation and restoration of Baiyangdian Lake, China. J Freshw Ecol 13:433–446

    Article  Google Scholar 

  • Yang Z, Li G, Wang D, Cui H, Shang T (2005) Pollution and the potential ecological risk assessment of heavy metals in sediment of Baiyangdian Lake. J Agro Environ Sci 24:945–951

    CAS  Google Scholar 

  • Yi Y, Yang Z, Zhang S (2011) Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ Pollut 159(10):2575–2585

    Article  CAS  Google Scholar 

  • Yin H, Gao Y, Fan C (2011) Distribution, sources and ecological risk assessment of heavy metals in surface sediments from Lake Taihu, China. Environ Res Lett 6(4). doi:10.1088/1748-9326/6/4/044012

  • Yu H, Zhang WB, Yu JP (2011) Distribution and potential ecological risk assessment of heavy metal in surface sediments of Hongze Lake. Environ Sci 32:437–444

    Google Scholar 

  • Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, Zhang G (2001) The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut 159:84–91

    Article  Google Scholar 

  • Zhang X, Guo H, Li H, Li J (2008) Distinguishing origins of elements in environmental geochemistry of Baiyangdian billabong of Hebei province. Earth Sci Front 15:90–96

    Article  CAS  Google Scholar 

  • Zhang H, Cui B, Xiao R, Zhao H (2010) Heavy metals in water, soils and plants in riparian wetlands in the Pearl River Estuary, South China. Int Soc Enivron Inf Sci 2:1344–1354

    Google Scholar 

  • Zheng G (2008) The vertical distribution regularity of heavy metal elements in Guanzhong Tier soil profile. Acta Geosci Sinica 29:109–115

    Google Scholar 

  • Zhuang C, Ouyang Z, Xu W, Bai Y, Zhou W, Zheng H, Wang X (2011) Impacts of human activities on the hydrology of Baiyangdian Lake, China. Environ Earth Sci 62:1343–1350

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Science and Technology Major Water Project (No. 2009ZX07209-008-03), National Nature Science Foundation (No. 51179006), Program for New Century Excellent Talents in University (NECT-10-0235) and the Fok Ying Tung Education Foundation (132009). The authors also thank Dr. G. Christokas for critical reading and valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhong Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, H., Bai, J., Xiao, R. et al. Levels, sources and risk assessment of trace elements in wetland soils of a typical shallow freshwater lake, China. Stoch Environ Res Risk Assess 27, 275–284 (2013). https://doi.org/10.1007/s00477-012-0587-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-012-0587-8

Keywords

Navigation