Skip to main content

Advertisement

Log in

Volcanic lightning: global observations and constraints on source mechanisms

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Lightning and electrification at volcanoes are important because they represent a hazard in their own right, they are a component of the global electrical circuit, and because they contribute to ash particle aggregation and modification within ash plumes. The role of water substance (water in all forms) in particular has not been well studied. Here data are presented from a comprehensive global database of volcanic lightning. Lightning has been documented at 80 volcanoes in association with 212 eruptions. The Volcanic Explosivity Index (VEI) could be determined for 177 eruptions. Eight percent of VEI = 3–5 eruptions have reported lightning, and 10% of VEI = 6, but less than 2% of those with VEI = 1–2. These findings suggest consistent reporting for larger eruptions but either less lightning or possible under-reporting for small eruptions. Ash plume heights (142 observations) show a bimodal distribution with main peaks at 7–12 km and 1–4 km. The former are similar to heights of typical thunderstorms and suggest involvement of water substance, whereas the latter suggest other factors contributing to electrical behavior closer to the vent. Reporting of lightning is more common at night (56%) and less common in daylight (44%). Reporting also varied substantially from year to year, suggesting that a more systematic observational strategy is needed. Several weak trends in lightning occurrence based on magma composition were found. The bimodal ash plume heights are obvious only for andesite to dacite; basalt and basaltic-andesite evenly span the range of heights; and rhyolites are poorly represented. The distributions of the latitudes of volcanoes with lightning and eruptions with lightning roughly mimic the distribution of all volcanoes, which is generally flat with latitude. Meteorological lightning, on the other hand, is common in the tropics and decreases markedly with increasing latitude as the ability of the atmosphere to hold water decreases poleward. This finding supports the idea that if lightning in large (deep) eruptions depends on water substance, then the origin of the water is primarily magma and not entrainment from the surrounding atmosphere. Seasonal effects show that more eruptions with lightning were reported in winter (bounded by the respective autumnal and vernal equinoxes) than in summer. This result also runs counter to the expectations based on entrainment of local water vapor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe K (1979) Seismicity of the caldera-making eruption of Mount Katmai, Alaska in 1912. Bull Seismol Soc Am 82:175–191

    Google Scholar 

  • Alaska Volcano Observatory (1993) Mt. Spurr’s 1992 eruptions. EOS Trans Am Geophys Union 74:217, and 221–222

    Article  Google Scholar 

  • Alcaraz AP (1989) Some notes on false alarms of volcanic activity and mudflows. In: Latter JH (ed) Volcanic hazards: assessment and monitoring. IAVCEI Proc Volcanol 1:163–168

  • Anderson T, Flett JS (1903) Report on the eruptions of the Soufriere in St. Vincent, and on a visit to Montagne Pelee in Martinique. Philos Trans R Soc Lond A 200:353–553

    Article  Google Scholar 

  • Anderson R, Bjornsson S, Blanchard DC, Gathman S, Hughes J, Jonasson S, Moore CB, Survilas HJ, Vonnegut B (1965) Electricity in volcanic clouds. Science 148:1179–1189

    Article  Google Scholar 

  • Anonymous (1863) The reason why geography and geology. Houlston and Wright, London, 88

    Google Scholar 

  • Arason P (2005) Lightning during volcanic eruptions in Iceland. Geophys Res Abstr 7:05369, SRef-ID: 1607-7962/gra/EGU05-A-05369

    Google Scholar 

  • Arason P, Sigurdsson E, Johannsdottir H, Juliusson G, Kristmundsson G (2000) Volcanogenic lightnings during a sub-glacial eruption in Iceland (abstract) International Conference on Lightning Protection, ICLP 2000. Rhodes, Greece, p 100

    Google Scholar 

  • AVO (Alaska Volcano Observatory) Bi-monthly report (1996) Double issue, September-December 1996, Alaska Volcano Observatory, Fairbanks, Alaska, 8, 5, and 6, 56

  • Benediktsson P (1996) Eruption at the ice cap: volcanic unrest at Vatnajokull, 1996 (video). Sjonvarpid, Reykjavik, Iceland

    Google Scholar 

  • Blanchard DC (1964) Charge separation from saline drops on hot surfaces. Nature 201:1164–1166

    Article  Google Scholar 

  • Blanchard DC, Björnsson S (1967) Water and the generation of volcanic electricity. Mon Weather Rev 95:895–898

    Article  Google Scholar 

  • Blong RJ (1984) Volcanic hazards: a sourcebook on the effects of eruptions. Academic, Sydney

    Google Scholar 

  • Bluth GJS, Scott CJ, Sprod IE, Schnetzler CC, Krueger AJ, Walter LS (1995) Explosive emissions of sulfur dioxide from the 1992 Crater Peak eruptions, Mount Spurr volcano, Alaska. In: Keith TEC (ed) The 1992 eruptions of Crater Peak, Mount Spurr, Alaska. US Geol Surv Bull 2139:37–45

  • Boschung P, Hilgner W, Luttgens G, Maurer B, Widmer A (1977) An experimental contribution to the question of the existence of lightning-like discharges in dust clouds. J Electrostat 3:303–310

    Article  Google Scholar 

  • Brook M, Moore CB, Sigurgeirsson T (1973) Lightning in volcanic clouds. EOS Trans Am Geophys Union 54:701

    Google Scholar 

  • Brooks CEP (1925) The distribution of thunderstorms over the globe. Geophys Mem London 24:147–164

    Google Scholar 

  • BVE (Bulletin of Volcanic Eruptions) (1989) Volcanol Soc Japan, Tokyo

  • BVE (Bulletin of Volcanic Eruptions) (1990) Volcanol Soc Japan, Tokyo

  • Byers HR, Braham RR (1949) The thunderstorm project. U.S. Weather Bureau, US Department of Commerce, Washington, DC

    Google Scholar 

  • Carey S, Bursik M (2000) Volcanic plumes. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 527–544

    Google Scholar 

  • Carroll JJ, Parco SA (1966) Social organization in a crisis situation: the Taal disaster. Philippine Sociological Society, Manila

    Google Scholar 

  • Christian HJ, Blakeslee RJ, Boccippio DJ, Boeck WL, Buechler DE, Driscoll KT, Goodman SJ, Hall JM, Koshak WJ, Mach DM, Stewart MF (2003) Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J Geophys Res 108:4005. doi:10.1029/2002JD002347

    Article  Google Scholar 

  • Clarke ED (1821) Lectures to the Royal Society of London

  • Cobb WE (1980) Electric fields and lightning in the Mt. St. Helens volcanic cloud. EOS Trans Am Geophys Union 61:987

    Google Scholar 

  • Crozier WD (1964) The electric field of a New Mexico dust devil. J Geophys Res 69:5427–5429

    Article  Google Scholar 

  • Davis CM, McNutt SR (1993) Lightning associated with the 1992 eruptions of Mt. Spurr Volcano, Alaska. EOS Trans Am Geophys Union 74(43):649

    Google Scholar 

  • Durant AJ, Shaw RA, Rose WI, Mi Y, Ernst GGJ (2008) Ice nucleation and overseeding of ice in volcanic clouds. J Geophys Res 113:D09206. doi:10.1029/2007JD009064

    Article  Google Scholar 

  • Erskine WF (1962) Katmai. Abelard-Schuman, London

    Google Scholar 

  • Ette A (1971) The effect of Harmattan dust on atmospheric electric parameters. J Atmos Terr Phys 33:295–300

    Article  Google Scholar 

  • Fedotov SA, Masurenkov YuP (1991) Active volcanoes of Kamchatka. Nauka, Moscow

    Google Scholar 

  • Fisher RV, Heiken G, Hulen JB (1997) Volcanoes: crucibles of change. Princeton University Press, Princeton

    Google Scholar 

  • Francis P (1976) Volcanoes. Penguin, New York

    Google Scholar 

  • Freier GD (1960) The electric field of a large dust devil. J Geophys Res 65:3504

    Article  Google Scholar 

  • Gallimberti I, Bacchiega G, Bondiou-Clergerie A, Lalande P (2002) Fundamental processes in long air gap discharges. CR Phys 3:1335–1339

    Google Scholar 

  • Gilbert JS, Lane SJ (1994a) The origin of accretionary lapilli. Bull Volcanol 56:398–411

    Google Scholar 

  • Gilbert JS, Lane SJ (1994b) Electrical phenomena in volcanic plumes. In: Casadevall, TJ (ed) Volcanic ash and aviation safety: Proceedings of the first international symposium on volcanic ash and aviation safety. US Geol Surv Bull 2047:31–38

  • Goldsmith O (1852) A history of the Earth and animated nature. Blackie, Glasgow

    Google Scholar 

  • Gorshkov GS (1959) Gigantic eruption of the volcano Bezymianny. Bull Volcanol 20:77–109

    Article  Google Scholar 

  • Gorshkov GS, Dubik YM (1970) Gigantic directed blast at Shiveluch Volcano (Kamchatka). Bull Volcanol 34:261–288

    Article  Google Scholar 

  • Gourgaud A, Camus G, Gerbe M-C, Morel J-M, Sudradjat A, Vincent PM (1989) The 1982–83 eruption of Galunggung (Indonesia): a case study of volcanic hazards with particular relevance to air navigation. In: Latter JH (ed) Volcanic hazards: assessment and monitoring. IAVCEI Proc Volcanol 1:151–162

  • Green JA (1944) Paricutin, the cornfield that grew a volcano. Natl Geogr Mag 85(155):129–156

    Google Scholar 

  • Gutierrez C (1972) A narrative of human response to natural disaster: the eruption of Paricutin. In: Nolan ML (ed) San Juan Nuevo Parangaricutiro: Memories of Past Years. Environmental Quality Note No. 07. Texas A&M University, College Station

    Google Scholar 

  • GVN (Global Volcanism Network) Bulletin (1991; 1992; 1993; 1994; 1995) Smithsonian Institution, Washington, DC

  • Hamilton W (1772) Observations on Mount Vesuvius, Mount Etna and other volcanoes, in a series of lectures addressed to the Royal Society of London

  • Havskov J, De la Cruz-Reyna S, Singh SK, Medina F, Gutierrez C (1983) Seismic activity related to the March-April, 1982 eruptions of El Chichon volcano, Chiapas, Mexico. Geophys Res Lett 10:293–296

    Article  Google Scholar 

  • Hobbs PV, Lyons JH (1993) Electrical activity associated with the May 18, 1980 eruption of Mt St Helens, Unpublished report, September, 1993

  • Hoblitt RP (1994) An experiment to detect and locate lightning associated with eruptions of Redoubt volcano. J Volcanol Geotherm Res 62:499–517

    Article  Google Scholar 

  • Hoblitt RB (2000) Was the 18 May lateral blast of Mt St Helens the product of two explosions? Philos Trans R Soc Lond A 358:1639–1661

    Article  Google Scholar 

  • Hoblitt RP, Murray TL (1990) Lightning detection and location as a remote eruptions monitor at Redoubt Volcano, Alaska. EOS Trans Am Geophys Union 71:146

    Google Scholar 

  • Hoblitt RP, Wolfe EW, Scott WE, Couchman MR (1996) The preclimactic eruptions of Mount Pinatubo, June 1991. In: Newhall CG, Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. University of Washington Press, Seattle, pp 457–511

    Google Scholar 

  • Illingworth AJ (1985) Charge separation in thunderstorms: small-scale processes. J Geophys Res 90:6026–6032

    Article  Google Scholar 

  • Jaggar TA (1906) The volcano Vesuvius in 1906. Tech Quart Proc 19(2):104–115

    Google Scholar 

  • James MR, Lane SJ, Gilbert JS (2000) Volcanic plume electrification: experimental investigation of a fracture-charging mechanism. J Geophys Res 105:16641–16649

    Article  Google Scholar 

  • James MR, Lane SJ, Gilbert JS (2003) Density, construction, and drag coefficient of electrostatic volcanic ash aggregates. J Geophys Res 108:2435. doi:10.1029/2002JB002011

    Article  Google Scholar 

  • James MR, Wilson L, Lane SJ, Gilbert JS, Mather TA, Harrison RG, Martin RS (2008) Electrical charging of volcanic plumes. Space Sci Rev 137:399–418. doi:10.1007/s11214-008-9362-z

    Article  Google Scholar 

  • Johnson RW, Threlfall NA (1985) Volcano town: the 1937–43 Rabaul eruptions. Robert Brown & Associates, Bathurst, NSW

    Google Scholar 

  • Judd JW (1888) In: Symons GJ (ed) The eruption of Krakatoa, and Subsequent Phenomena. Report of the Krakatoa Committee of the Royal Society. Trubner and Co, London, pp 1–56

    Google Scholar 

  • Juhle W, Coulter H (1955) The Mt. Spurr eruption, July 9, 1953. EOS Trans Am Geophys Union 36:199

    Google Scholar 

  • Katili JA, Sudrajat A (1984) Galunggung: the 1982–1983 eruption. Volcanol Survey Indonesia, Bandung, p 3

    Google Scholar 

  • Katsui Y, Kawachi S, Kondo Y, Ikeda Y, Nakagawa M, Gotoh Y, Yamagishi H, Yamazaki T, Sumita M (1990) The 1988–1989 explosive eruption of Tokachi-dake, Central Hokkaido, its sequence and mode. Bull Volcanol Soc Japan 35:111–129

    Google Scholar 

  • Kienle J, Swanson SE (1985) Volcanic hazards from future eruptions of Augustine volcano, Alaska. Report UAG R-275, University of Alaska, Fairbanks, Alaska

  • Kikuchi K, Endoh T (1982) Atmospheric electrical properties of volcanic ash particles in the eruption of Mt. Usu volcano, 1977. J Meteorol Soc Jpn 60:548–561

    Google Scholar 

  • Krafft M (1993a) Vulkane, Feuer der Erde. Otto Maier, Ravensberg, Germany, pp 56–57

    Google Scholar 

  • Krafft M (1993b) Vulkane, Feuer der Erde. Otto Maier, Ravensberg, Germany, p 103

    Google Scholar 

  • Krehbiel P (1986) The electrical structure of thunderstorms. In: Krider EP, Roble RG (eds) The Earth’s electrical environment. National Academy Press, Washington DC, pp 90–113

    Google Scholar 

  • Lane FW (1965) The elements rage. Chilton, Philadelphia

    Google Scholar 

  • Lane SJ, Gilbert JS (1992) Electric potential gradient changes during explosive activity at Sakurajima Volcano, Japan. Bull Volcanol 54:590–594

    Article  Google Scholar 

  • Luhr JF, Simkin T (eds) (1993) Paricutin: the volcano born in a Mexican cornfield. Geoscience Press, Phoenix

    Google Scholar 

  • MacDonald GA (1972) Volcanoes. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Mason BG, Pyle DM, Wade WB, Jupp T (2004) Seasonality of volcanic eruptions. J Geophys Res 109:B04206. doi:10.1029/2002JB002293

    Article  Google Scholar 

  • Mather TA, Harrison RG (2006) Electrification of volcanic plumes. Surv Geophys 27:387–432. doi:10.1007/s10712-006-9007-2

    Article  Google Scholar 

  • McClelland L, Simkin T, Summers M, Nielsen E, Stein TC (1989) Global volcanism, 1975–1985. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • McKee CO, Johnson RW, Lowenstein PL, Riley SJ, Blong RJ, de saint Ours P, Talai B (1985) Rabaul caldera, Papua New Guinea: Volcanic Hazards, surveillance, and eruption contingency planning. J Volcanol Geotherm Res 23:195–237

    Article  Google Scholar 

  • McNutt SR (1994) Volcanic tremor amplitude correlated with eruption explosivity and its potential use in determining ash hazards to aviation. US Geol Surv Bull 2047:377–385

    Google Scholar 

  • McNutt SR, Davis CM (2000) Lightning associated with the 1992 eruptions of Crater Peak, Mount Spurr Volcano, Alaska. J Volcanol Geotherm Res 102:45–65

    Article  Google Scholar 

  • McNutt SR, Tytgat G, Estes S, Stihler S (2010) A parametric study of the January 2006 explosive eruptions of Augustine volcano, Alaska. US Geol Surv Prof Paper 1769 (in press)

  • Melson W (1994) The eruption of 1968 and tephra stratigraphy of Arenal volcano. In: Sheets PD, McKee BR (eds) Archaeology, volcanism, and remote sensing in the Arenal region, Costa Rica. Univ Texas Press, Austin, pp 24–47

    Google Scholar 

  • Mercalli G (1907) I vulcani attivi della terra. U Hoepli Press, Milano

    Google Scholar 

  • Miller TP, Chouet BA (1994) The 1989–1990 eruptions of Redoubt Volcano: an introduction. J Volcanol Geotherm Res 62:1–10

    Article  Google Scholar 

  • Miura T, Koyaguchi T, Tanaka Y (2002) Measurements of electric charge distribution in volcanic plumes at Sakurajima Volcano, Japan. Bull Volcanol 64:75–93

    Article  Google Scholar 

  • Moore JG, Rice CJ (1984) Chronology and character of the May 18, 1980 explosive eruptions of Mount St Helens. Explosive volcanism: inception, evolution and hazards. National Academy Press, Washington DC, pp 133–142

    Google Scholar 

  • Morgan FD, Williams ER, Madden TR (1989) Streaming potential properties of Westerly Granite with applications. J Geophys Res 94:12449–12461

    Article  Google Scholar 

  • Nairn IA, Hewson CAY, Latter JH, Wood CP (1976) Pyroclastic eruptions of Ngauruhoe Volcano, central north island, New Zealand, 1974, January and March. In: Johnson RW (ed) Volcanism in Australasia. Elsevier, Amsterdam, pp 385–405

    Google Scholar 

  • Natl Geogr (1982) (photo) Nov issue, National Geographic magazine, 162, 656–657

    Google Scholar 

  • Natl Geogr (1993) (photo) July issue, National Geographic magazine, 183, 83–84

    Google Scholar 

  • Natl Geogr (2007) (photo) Sept issue, National Geographic magazine, 212, 14–15

  • Natl Geogr (2008) (photo) Nov issue, National Geographic magazine, 214, 16–17

    Google Scholar 

  • Newcott WR, Menzel P (1993) Lightning: nature’s high-voltage spectacle. Natl Geogr 184:83–103

    Google Scholar 

  • Newhall CG, Punongbayan RS (1996) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. University of Washington Press, Seattle

    Google Scholar 

  • Newhall CG, Self S (1982) Volcanic Explosivity Index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238

    Article  Google Scholar 

  • Niida K, Katsui Y, Suzuki T, Kondo Y (1980) The 1977–1978 eruption of Usu Volcano. J Fac Sci Hokkaido Univ Ser IV 19:357–394

    Google Scholar 

  • Ondoh T (1990) Unusual intensity enhancements of low frequency atmospherics associated with great eruptions of Izu-Oshima volcano in November 1986. J Geomagn Geoelectr 42:237–256

    Google Scholar 

  • Orville RE, Henderson RW (1986) Global distribution of midnight lightning: September 1977 to August 1978. Mon Weather Rev 114:2640–2653

    Article  Google Scholar 

  • Pack DW, Rice CJ, Tressel BJ, Lee-Wagner CJ, Oshika EM (2000) Civilian uses of surveillance satellites, Crosslink, The Aerospace Corporation, December issue

  • Palmieri L (1873) Indagini spettroscopiche sulle sublimazioni vesuviane. Rend R Acc Sc Fis Mat Serie I vol. XII

  • Paskievitch JF, Murray TL, Hoblitt RP, Neal CA (1995) Lightning associated with the August 18, 1992, eruption of Crater Peak vent, Mount Spurr Volcano, Alaska. In: Keith TEC (ed) The 1992 eruptions of Crater Peak, Mount Spurr, Alaska. US Geol Surv Bull 2139:179–182

  • Perret FA (1924) The Vesuvius eruption of 1906: study of a volcanic cycle. The Carnegie Institution of Washington, Washington DC

    Google Scholar 

  • Petersen T, De Angelis S, Tytgat G, McNutt SR (2006) Local infrasound observations of large ash explosions at Augustine volcano, Alaska, during January 11–28, 2006. Geophys Res Lett 33:L12303. doi:10.1029/2006GL026491

    Article  Google Scholar 

  • Pond JA, Smith SP (1886) Observations on the eruption of Mount Tarawera, Bay of Plenty, New Zealand, 10th June, 1886. New Zealand Inst Trans Proc 19:342–371

    Google Scholar 

  • Poster Display (1995) The 1995 International Workshop on Volcanoes Commemorating the 50th Anniversary of Mt. Showa-Shinzan, Hokkaido, Japan

  • Pounder C (1980) Volcanic lightning. Weather 35:357–360

    Google Scholar 

  • Power JA, Nye CJ, Coombs ML, Wessels RL, Cervelli PF, Dehn J, Wallace KL, Freymueller JT, Doukas MP (2006) The reawakening of Alaska’s Augustine volcano. Eos Trans Am Geophys Union 87(37). doi:10.1029/2006EO370002

  • Pratt WE (1911) The eruption of Taal Volcano, January 30, 1911. Philipp J Sci 6A(2):63–83

    Google Scholar 

  • Rogers JA, Maslak S, Lahr JC (1980) A seismic electronic system with automatic calibration and crystal reference. US Geol Surv Open-File Rep 80–324:1–130

    Google Scholar 

  • Rose WI, Delene D, Schneider D, Bluth G, Kreuger A, Sprod I, McKee C, Davies H, Ernst GGJ (1995a) Ice in the 1994 Rabaul eruption cloud: implications for volcano hazard and atmospheric effects. Nature 375:477–479

    Article  Google Scholar 

  • Rose WI, Kostinski AB, Kelly L (1995b) Real-time C-band radar observations of 1992 eruption clouds from Crater Peak, Mount Spurr Volcano, Alaska. In: Keith TEC (ed) The 1992 eruptions of Crater Peak, Mount Spurr, Alaska. US Geol Surv Bull 2139:19–26

  • Rose WI, Bluth GJS, Ernst GGJ (2000) Integrating retrievals of volcanic cloud characteristics from satellite remote sensors: a summary. Philos Trans R Soc Lond S A 358:1538–1606

    Google Scholar 

  • Rosenbaum JG, Waitt RB Jr (1981) Summary of eyewitness accounts of the May 18 eruption. US Geol Surv Prof Pap 1250:315–320

    Google Scholar 

  • Rulenko OP (1981) Electrical processes in the vapor and gas clouds of the Karymskaya Sopka Volcano. Dokl Akad Nauk SSSR 245:33–35

    Google Scholar 

  • Ryan MP (ed) (1994) Magmatic systems. Academic, San Diego

    Google Scholar 

  • Saavedra VA, Ramis RO (1991) Volcanoes. CEPA, Gallery, S.A., Madrid, Spain

    Google Scholar 

  • Sabit JP, Pigtain RC, de la Cruz EG (1996) The west-side story: observations of the 1991 Mount Pinatubo eruptions from the west. In: Newhall CG, Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. University of Washington Press, Seattle, pp 445–455

    Google Scholar 

  • Sapper K (1905) den vulkangebieten Mittelamerikas and Westindiens. Verlag der E. Schweizerbartschen Verlagsbuchhandlung, Stuttgart, pp 101–153

    Google Scholar 

  • Schneider M (1995) Eruption! Mt. Ruapehu, N.Z. (postcard) Kiwi Vista collection, New Zealand

  • SEAN (Scientific Event Alert Network) Bulletin (1986) Smithsonian Institution, Washington, DC

  • Shepherd JB, Aspinall WP, Rowley KC, Pereire J, Sigurdsson H, Fiske RS, Tomblin JF (1979) The eruption of Soufriere Volcano, St. Vincent, April-June 1979. Nature 282:24–28

    Article  Google Scholar 

  • Shore D (1975) The man who fought Vesuvius. Weekend Mag, July 30:6–7

  • Simkin T (1993) Terrestrial volcanism in space and time. Annu Rev Earth Planet Sci 21:427–452

    Article  Google Scholar 

  • Simkin T, Fiske RS (1983) Krakatau 1883: the volcanic eruption and its effects. Smithsonian Institution Press, Washington DC

    Google Scholar 

  • Simkin T, Howard KA (1970) Caldera collapse in the Galapagos Islands. Science 169:429–437

    Article  Google Scholar 

  • Simkin T, Siebert L (1994) Volcanoes of the world, 2nd edn. Geoscience Press, Tucson

    Google Scholar 

  • Smithsonian Institution (National Museum of Natural History) (2009) Global Volcanism Program, Volcanoes of the World, http://www.volcano.si.edu/ Cited 1 Oct 2008

  • Sonafrank GHC, Power J, March G, Davies JN (1991) Acquisition and automatic processing of seismic data at the Geophysical Institute, University of Alaska. Seismol Res Lett 62:23

    Google Scholar 

  • Sparks RSJ, Bursik MI, Carey SN, Gilbert JS, Glaze L, Sigurdsson H, Woods AW (1997) Volcanic plumes. Wiley, New York

    Google Scholar 

  • Stearns HT (1925) The explosive phase of Kilauea Volcano, Hawaii, in 1924. Bull Volcanol 1:193–208

    Article  Google Scholar 

  • Taylor GAM (1958) The 1951 eruption of Mount Lamington, Papua. Aust Bur Miner Resour Geol Geophys Bull 38:1–117

    Google Scholar 

  • Textor C, Graf HF, Herzog M, Oberhuber JM (2003) Injection of gases into the stratosphere by explosive volcanic eruptions. J Geophys Res 108:4606. doi:10.1029/2002JD002987

    Article  Google Scholar 

  • Textor C, Graf HF, Herzog M, Oberhuber JM, Rose WI, Ernst GGJ (2005a) Volcanic particle aggregation in explosive eruption columns. Part I: Parameterization of the microphysics of hydrometeors and ash. J Volcanol Geotherm Res 150:359–377

    Article  Google Scholar 

  • Textor C, Graf HF, Herzog M, Oberhuber JM, Rose WI, Ernst GGJ (2005b) Volcanic particle aggregation in explosive eruption columns. Part II: Numerical experiments. J Volcanol Geotherm Res 150:378–394

    Article  Google Scholar 

  • Thomas RJ, Krehbiel PR, Rison W, Hunyady SJ, Winn WP, Hamlin T, Harlin J (2004) Accuracy of the lightning mapping array. J Geophys Res 109. doi:10.1029/2004JD004549

  • Thomas RJ, Krehbiel PR, Rison W, Aulich G, Edens H, McNutt SR, Tytgat G, Clark E (2007) Electrical activity during the 2006 Mount St. Augustine volcanic eruptions. Science 315:1097

    Article  Google Scholar 

  • Thomas RJ, McNutt SR, Krehbiel P, Rison W, Aulich G, Edens H, Tytgat G, Clark E (2010) Lightning and electrical activity during the eruptions of Augustine volcano. US Geol Surv Prof Pap 1769

  • Thompson D (2000) Volcano cowboys—the rocky evolution of a dangerous science. Thomas Dunne Books, St Martin’s Press, New York

    Google Scholar 

  • Thompson G, McNutt SR, Tytgat G (2002) Three distinct regimes of volcanic tremor associated with eruptions of Shishaldin volcano, Alaska, April 1999. Bull Volcanol. doi:10.1007/s00445-002-0228-z

    Google Scholar 

  • Thorarinsson S (1966) Surtsey: the new island in the North Atlantic. Almenna Bokateloged, Reykjavik

    Google Scholar 

  • Tillard S (1812) A narrative of the eruption of a volcano in the sea off the island of St. Michael. Philos Trans R Soc Lond 102:152–158

    Article  Google Scholar 

  • Uman MA (1987) The lightning discharge. International Geophysical Series, 39. Academic Press, Orlando

    Google Scholar 

  • Viemeister PE (1972) The lightning book. MIT Press, Cambridge

    Google Scholar 

  • Viramonte JG, Ubeda E, Martinez M (1971) The 1971 eruption of Cerro Negro. Geol Service of Nicaragua, Managua, Nicaragua

    Google Scholar 

  • Volcanes de Chile (1991) (tourist book with photos)

  • Volcano Quarterly, Tanaka J (ed) (1995) The village square of volcanodom. Issaquah, Washington

  • Wallace P, Anderson A (2000) Volatiles in magmas. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 149–170

    Google Scholar 

  • Ward PL, Endo ET, Harlow DH, Allen R, Marquez D, Eaton JP (1974) Development and evaluation of a prototype global volcano surveillance system utilizing the ERTS-1 satellite data collection system. US Geol Surv Open file Rep 74–124:154

    Google Scholar 

  • Wilcox RE (1959) Some effects of recent volcanic ash falls with especial reference to Alaska. US Geol Surv Bull 1028-N:409–476

    Google Scholar 

  • Williams ER (1985) Large-scale charge separation in thunderclouds. J Geophys Res 90:6013–6025

    Article  Google Scholar 

  • Williams ER (1992) The Schumann resonance: a global tropical thermometer. Science 256:1184–1187

    Article  Google Scholar 

  • Williams ER (1995) Meteorological aspects of thunderstorms, Chapter 3 in CRC Handbook of Atmospheric Electrodynamics, 27–60. CRC Press, Boca Raton

    Google Scholar 

  • Williams ER (2005) Lightning and climate: a review. Atmos Res 76:272–287

    Article  Google Scholar 

  • Williams ER, McNutt SR (2005) Total water contents in volcanic eruption clouds and implications for electrification and lightning. In: Pontikis C (ed) Recent progress in lightning physics, Chapter 6. Research Signpost Publishing, Kerala, India, pp 81–93

    Google Scholar 

  • Williams E, Nathou N, Hicks E, Pontikis C, Russell B, Miller M, Bartholomew MJ (2009) The electrification of dust-lofting gust fronts (‘haboobs’) in the Sahel. Atmos Res 91:292–298

    Article  Google Scholar 

Download references

Acknowledgements

Discussions on this subject with RV Anderson, P Arason, M Baker, D Blanchard, CGJ Ernst, J Gilbert, T Grove, P Herzegh, R Hoblitt, P Hobbs, C Kessinger, P Krehbiel, T Mather, J Murray, C Newhall, A Oswalt, D Pack, C Rice, W Rison, W Rose, D Schneider, T Simkin, C Textor, R Thomas, A Tupper, J Ewert, and R Wunderman are gratefully acknowledged. We thank two anonymous reviewers for their comments which helped to improve the manuscript. ERW’s work on this problem has been assisted by the NASA ASAP (Advanced Satellite Aviation Assets) program under J Murray. This work was partially supported by the National Science Foundation under contract ATM-0538319.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. McNutt.

Additional information

Editorial responsibility: JC Phillips

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix

Lightning at Volcanoes from Literature Search (DOC 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McNutt, S.R., Williams, E.R. Volcanic lightning: global observations and constraints on source mechanisms. Bull Volcanol 72, 1153–1167 (2010). https://doi.org/10.1007/s00445-010-0393-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-010-0393-4

Keywords

Navigation