Skip to main content
Log in

Liquid-feeding performances of ants (Formicidae): ecological and evolutionary implications

  • Plant Animal Interactions
  • Published:
Oecologia Aims and scope Submit manuscript

An Erratum to this article was published on 23 February 2005

Abstract

Disparities in liquid-feeding performances of major ant taxa have likely been important to resource partitioning among ants, to the nature and composition of ant partnerships with plants and sap-feeding trophobionts, and to ecological and evolutionary diversification of ant taxa. We measured performance volumetrically for individual workers of 77 ant species from lowland rain forests of Amazonia and Borneo and three key North American taxa. In trials with 9% sucrose solution, performances were strongly related to body size (and alitrunk length) and to proventricular structure at generic to subfamilial levels. Highly modified proventriculi were associated with disproportionately large load sizes in Formicinae and certain small-bodied Dolichoderinae. These same taxa also ingested liquids more rapidly during foraging than did similar-sized species with plesiomorphic proventriculi. Secondarily reduced foraging performances of several formicines likely reflect ecological or evolutionary trade-offs related to dietary specialization or anti-predator defenses. Across formicines and dolichoderines, performances differed by functional group. Relatively small loads and slow uptake characterized species tending trophobionts (mainly Hemiptera) day and night in large worker aggregations. Large loads and rapid uptake typified solitary, diurnal “leaf-foragers.” Intermediate feeding performances characterized a few species that both tended trophobionts in small aggregates and frequently foraged alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a•f
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Attygalle AB, Mutti A, Rohe W, Maschwitz U, Garbe W, Bestmann HJ (1998) Trail pheromone from the Pavan gland of the ant Dolichoderus thoracicus (Smith). Naturwissenschaften 85:275-277

    Article  CAS  Google Scholar 

  • Baroni Urbani C, de Andrade ML (1997) Pollen eating, storing and spitting by ants. Naturwissenschaften 84:256•258

    Article  Google Scholar 

  • Baroni-Urbani C, Bolton B, Ward PS (1992) The internal phylogeny of ants (Hymenoptera: Formicidae). Syst Entomol 17:301•329

    Google Scholar 

  • Becerra JX, Venable DL (1989) Extrafloral nectaries: a defense against ant-Homoptera mutualisms? Oikos 55:276•280

    Google Scholar 

  • Blakeman JP (1971) The chemical environment of the leaf surface in relation to growth of pathogenic fungi. In: Preece TF, Dickinson CH (eds) Ecology of leaf surface microorganisms. Academic, New York, pp 255•268

  • Blñ/4thgen N, Fiedler K (2002) Interactions between weaver ants Oecophylla smaragdina, homopterans, trees and lianas in an Australian rain forest canopy. J Anim Ecol 71:793•801

    Google Scholar 

  • Blñ/4thgen N, Fiedler K (2003) Competition for composition: lessons from nectar-feeding ant communities. Ecology (in press)

    Google Scholar 

  • Blñ/4thgen N, Verhaagh M, Goitia W, Jaffe K, Morawetz W, Barthlott W (2000) How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew. Oecologia 125:229•240

    Article  Google Scholar 

  • Blñ/4thgen N, Gebauer G, Fiedler K (2003) Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community. Oecologia 137:426•435

    Article  PubMed  Google Scholar 

  • Bolton B (1995) A new general catalog of the ants of the world. Harvard University Press, Cambridge, Mass.

  • Brñ/4hl CA, Gunsalam G, Linsenmair KE (1998) Stratification of ants (Hymenoptera, Formicidae) in a primary rain forest in Sabah, Borneo. J Trop Ecol 14:285•297

    Article  Google Scholar 

  • Chiotis M, Jermiin LS, Crozier RH (2000) A molecular framework for the phylogeny of the ant subfamily Dolichoderinae. Mol Phylogen Evol 17:108•116

    Article  CAS  Google Scholar 

  • Davidson DW (1988) Ecological studies of neotropical ant gardens. Ecology 69:1138•1152

    Google Scholar 

  • Davidson DW (1997) The role of resource imbalances in the evolutionary ecology of tropical arboreal ants. Biol J Linn Soc 61:153•181

    Article  Google Scholar 

  • Davidson DW (1998) Resource discovery versus resource domination in ants: breaking the trade-off. Ecol Entomol 23:484•490

    Article  Google Scholar 

  • Davidson DW, McKey D (1993) The evolutionary ecology of symbiotic ant-plant relationships. J Hymenopt Res 2:13•83

    Google Scholar 

  • Davidson DW, Cook SC, Snelling RR, Chua TH (2003) Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300:969•972

    Article  CAS  PubMed  Google Scholar 

  • Dejean A, McKey D, Gibernau M, Belin M (2000) The arboreal ant mosaic in a Cameroonian rainforest (Hymenoptera: Formicidae). Sociobiology 35:403•423

    Google Scholar 

  • Dohlen von C, Moran NA (1995) Molecular phylogeny of the Homoptera: a paraphyletic taxon. J Mol Evol 41:211•223

    PubMed  Google Scholar 

  • Eisner T (1957) A comparative morphological study of the proventriculus of ants (Hymenoptera: Formicidae). Bull Mus Comp Zool 116:441•490

    Google Scholar 

  • Eisner T, Brown WL Jr (1958) The evolution and social significance of the ant proventriculus. Proc 10th Intl Congr Entomol 2:503•508

    Google Scholar 

  • Eisner T, Wilson EO (1952) The morphology of the proventriculus of a formicine ant. Psyche 59:47•60

    Google Scholar 

  • Fiala B (1990) Extrafloral nectaries vs ant-Homoptera mutualisms: a comment on Becerra and Venable. Oikos 59:281•282

    Google Scholar 

  • Gil R et al (2003) The genome sequence of Blochmannia floridanus: comparative analysis of reduced genomes. Proc Natl Acad Sci USA 100:9388•9393

    Article  CAS  PubMed  Google Scholar 

  • Graham P, Collett TS (2002) View-based navigation in insects: how wood ants (Formica rufa L.) look at and are guided by extended landmarks. J Exp Biol 205:2499-2509

    PubMed  Google Scholar 

  • Gronenberg W, Hölldobler B (1999) Morphologic representation of visual and antennal information in the ant brain. J Comp Neurol 412:229•240

    Article  CAS  PubMed  Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

  • Heil M, Fiala B, Baumann B, Linsenmair KE (2000) Temporal, spatial and biotic variations in extrafloral nectar secretion by Macaranga tanarius. Funct Ecol 14:749-757

    Article  Google Scholar 

  • Heil M, Koch T, Hilpert A, Fiala B, Boland W, Linsenmair KE (2001) Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proc Natl Acad Sci USA 98:1083-1088

    Article  CAS  PubMed  Google Scholar 

  • Hölldobler B (1980) Canopy orientation: a new kind of orientation in ants. Science 210:86•88

    Google Scholar 

  • Hölldobler B, Taylor RW (1983) A behavioral study of the primitive ant Nothomyrmecia macrops. Insect Soc 30:384•401

    Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge, Mass.

  • Hossaert-McKey M, Orivel J, Labeyrie E, Pascal L, Delabie JHC, Dejean A (2001) Differential associations with ants of three co-occurring extrafloral nectary-bearing plants. Ecoscience 8:325-335

    Google Scholar 

  • Josens RB, Roces F (2000) Foraging in the ant Camponotus mus: nectar-intake rate and crop filling depend on colony starvation. J Insect Physiol 46:1103•1110

    Article  CAS  PubMed  Google Scholar 

  • Josens RB, Farina WM, Roces F (1998) Nectar feeding by the ant Camponotus mus: intake rate and crop filling as a function of sucrose concentration. J Insect Physiol 44:579•585

    Article  CAS  Google Scholar 

  • Longino JT (2003) The Crematogaster (Hymenoptera, Formicidae, Myrmicinae) of Costa Rica. Zootaxa 15:1•150

    Google Scholar 

  • Maschwitz U, Haenel H (1985) The migrating herdsman Dolichoderus cuspidatus and ant with a novel mode of life. Sociobiology 17:171•184

    Google Scholar 

  • Maschwitz U, Maschwitz E (1974) Platzende Arbeiterinnen: eine neue Art der Feindabwehr bei sozialen Hautflñ/4glern. Oecologia 14:289•294

    Google Scholar 

  • Mayr G (1862) Myrmecologische studien. Verh Zool-Bot Ges Wien 12:649•776

  • McKey D (1984) Interaction of the ant-plant Leonardoxa africana (Caesalpiniaceae) with its obligate inhabitants in a rainforest in Cameroon. Biotropica 16:81•99

    Google Scholar 

  • Messina FJ (1981) Plant protection as a consequence of an ant membracid mutualisms: interactions on goldenrod Solidago sp. Ecology 62:1433•1440

    Google Scholar 

  • Moran NA, Plague GR, Sandstrom JP, Wilcox JL (2003) A genomic perspective on nutrient provisioning by bacterial symbionts of insects. Proc Natl Acad Sci USA 100:14543•14548

    Article  CAS  PubMed  Google Scholar 

  • Oliveira PS, Del-Claro K (2004) Multitrophic interactions in a neotropical savanna: ant-hemipteran systems, associated insect herbivores, and host plants. In: Burslem DFRP, Pinard MA, Hartley SE (eds) Biotic interactions in the tropics. Cambridge University Press, Cambridge

  • Pfeiffer M, Linsenmair KE (2000) Contributions to the life history of the Malaysian giant ant Camponotus gigas (Hymenoptera, Formicidae). Insect Soc 47:123•132

    Google Scholar 

  • Read AF, Nee S (1995) Inference from binary comparative data. J Theor Biol 173:99•108

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223•225

    Google Scholar 

  • SAS Institute (2001) JMP version 4.0.4. SAS institute, Cary, N.C.

  • Schmid-Hempel P, Kacelnik A, Houston AI (1985) Honeybees maximize efficiency by not filling their crop. Behav Ecol Sociobiol 17:61•66

    Google Scholar 

  • Shattuck SO (1992a) Generic revision of the ant subfamily Dolichoderinae (Hymenoptera: Formicidae). Sociobiology 21:1•181

    Google Scholar 

  • Shattuck SO (1992b) Higher classification of the ant subfamilies Aneuretinae, Dolichoderinae and Formicinae (Hymenoptera: Formicidae). Syst Ent 17:199•206

    Google Scholar 

  • Shattuck SO (1992c) Review of the dolichoderine ant genus Iridomyrmex Mayr with descriptions of three new genera (Hymenoptera: Formicidae). J Aust Entomol Soc 31:13•18

    Google Scholar 

  • Sokal RR, Rohlf FJ (1969) Biometry. Freeman, San Francisco

  • Swain RB (1980) Trophic competition among parabiotic ants. Insect Soc 27:377•390

    Google Scholar 

  • Tjallingii WF (1995) Regulation of phloem sap feeding by aphids. In: Chapman RF, de Boer G (eds) Regulatory mechanisms in insect feeding. Chapman & Hall, New York, pp 120•209

  • Wheeler WM (1910) Ants. Columbia University Press, New York

  • Wilson EO (2003) Pheidole in the New World. Harvard University Press, Cambridge, Mass.

  • Yao I, Akimoto SI (2002) Flexibility in the composition and concentration of amino acids in honeydew of the drepanosiphid aphid Tuberculatus quercicola. Ecol Entomol 27:745•752

    Article  Google Scholar 

  • Yu DW, Davidson DW (1997) Experimental studies of species-specificity in Cecropia-ant relationships. Ecol Monogr 67:273•294

    Google Scholar 

Download references

Acknowledgements

Studies were supported by the U. S. National Science Foundation (no. IBN-9707932 to D.W.D.). We thank Peru
tm)s Instituto Nacional de Recursos Naturales (INRENA), and officials of the Parque Nacional Manu, Universidad Nacional Agraria de La Molina, the Universiti Brunei Darussalam, and the Brunei Museums, for granting or facilitating permissions to study and collect inside national parks. Specimens are vouchered in the Los Angeles County Natural History Museum and either (Peru) the Museo de Entomología of the Universidad National Agraria La Molina (or Museo de Historia Natural) or (Brunei) the Brunei Museums. For determinations of ant taxa, we thank E.O. Wilson (Pheidole), R.J. Kohout (Polyrhachis), and J.T. Longino (Crematogaster). D. Bramble and the reviewers commented helpfully on prior drafts, and E. King trained S. Cook in microscopy. M. Kilvington and T.H. Chua generously provide hospitality in Brunei. In 1974, W.L. Brown Jr, now deceased, first hinted to D.W.D. of a relationship between the sepalous proventriculus and the ecological and evolutionary success of formicines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane W. Davidson.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00442-005-1822-5

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidson, D.W., Cook, S.C. & Snelling, R.R. Liquid-feeding performances of ants (Formicidae): ecological and evolutionary implications. Oecologia 139, 255–266 (2004). https://doi.org/10.1007/s00442-004-1508-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-004-1508-4

Keywords

Navigation