Skip to main content

Advertisement

Log in

Effect of dose and route of inoculation on the generation of CD4+ Th1/Th2 type of immune response in murine visceral leishmaniasis

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

A potential vaccine candidate for visceral leishmaniasis should favour the development of CD4+ Th1 type of immune response which is further dependent on the dose of antigen and the route of inoculation. The present study was carried out to check the effective dose (low, medium and high) and route (subcutaneous, intradermal, intraperitoneal and intracardiac) of inoculation for the development of a CD4+ Th1 type of immune response in BALB/c mice. The parasite load was found to be the lowest in mice inoculated with low dose of promastigotes through the subcutaneous route, followed by intradermal, intraperitoneal and intracardiac routes. A reduced parasite load in mice inoculated through subcutaneous route was found to be associated with heightened DTH responses. The IgG2a levels were found to be the maximum in case of mice inoculated with the low dose of promastigotes through subcutaneous route followed by intradermal and intraperitoneal routes. In contrast, mice inoculated with high dose of promastigotes through the intracardiac route showed increased levels of IgG1. Low-dose inoculation with subcutaneous route elicited maximum IFN-γ levels, which points towards the generation of Th1 response. Maximum IL-4 and IL-10 levels were detected in high-dose inoculation through intracardiac route suggesting the development of Th2 response. In conclusion, inoculation through subcutaneous route with low dose of live whole parasite antigen evokes a strong Th1 response in BALB/c mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed S, Colmenares M, Soong L, Goldsmith-Pestana K, Munstermann L, Molina R, McMahon-Pratt D (2003) Intradermal infection model for pathogenesis and vaccine studies of murine visceral leishmaniasis. Infect Immun 71(1):401–410

    Article  PubMed  CAS  Google Scholar 

  • Alexander J, Satoskar AR, Russell DG (1999) Leishmania species: models of intracellular parasitism. J Cell Sci 112:2993–3002

    PubMed  CAS  Google Scholar 

  • Awasthi A, Mathur RK, Saha B (2004) Immune response to Leishmania infection. Indian J Med Res 119(6):238–258

    PubMed  CAS  Google Scholar 

  • Belkaid Y, Von Stebut E, Mendez S, Lira R, Caler E, Bertholet S, Udey MC, Sacks D (2002) CD8+ T cells are required for primary immunity in C57BL/6 mice following low-dose, intradermal challenge with Leishmania major. J Immunol 168(8):3992–4000

    PubMed  CAS  Google Scholar 

  • Bradley DJ, Kirkley J (1977) Regulation of Leishmania populations within host I. the variable course of Leishmania donovani infections in mice. Clin Exp Immunol 30(1):119–129

    PubMed  CAS  Google Scholar 

  • Bretscher PA, Wei G, Menon JN, Bielefeldt-Ohmann H (1992) Establishment of stable, cell mediated immunity that makes “susceptible” mice resistant to Leishmania major. Science 257(5069):539–542

    Article  PubMed  CAS  Google Scholar 

  • Carrion J, Nieto A, Iborra S, Iniesta V, Soto M, Folgueira C, Abanades DR, Requena JM, Alonso C (2006) Immunohistological features of visceral leishmaniasis in BALB/c mice. Paraite Immunol 28(5):173–183

    Article  CAS  Google Scholar 

  • Doherty TM, Coffman RL (1996) Leishmania major: effect of infectious dose on T cell subset development in BALB/c mice. Exp Parasitol 84(2):124–135

    Article  PubMed  CAS  Google Scholar 

  • Gajewski TF, Pinnas M, Wong T, Fitch FW (1991) Murine Th1 and Th2 clones proliferate optimally in response to distinct antigen-presenting cell populations. J Immunol 146(6):1750–1758

    PubMed  CAS  Google Scholar 

  • Graham PCC (1987) Introduction. In: Peters W, Killick-Kendrick R (eds) The Leishmaniasis in biology and medicine. Academic Press, New York

    Google Scholar 

  • Howard MK, Sayers G, Miles MA (1987) Leishmania donovani metacyclic promastigotes: transformation in vitro, lectin agglutination, complement resistance and infectivity. Exp Parasitol 64(2):147–156

    Article  PubMed  CAS  Google Scholar 

  • Khamesipour A, Rafati S, Davoudi N, Maboudi F, Modabber F (2006) Leishmaniasis vaccine candidates for development: a global overview. Indian J Med Res 123(3):423–438

    PubMed  Google Scholar 

  • Killick-Kendrick R, Killick-Kendrick M, Pinelli E, Del Real G, Molina R, Vitutia MM, Canavate MC, Nieto J (1994) A laboratory model of canine leishmaniasis: the inoculation of dogs with Leishmania infantum promastigotes from midguts of experimentally infected phlebotomine sandflies. Parasite 1(4):311–318

    PubMed  CAS  Google Scholar 

  • Liew FY, O’Donnell CA (1993) Immunology of leishmaniasis. Adv Parasitol 32:161–259

    Article  PubMed  CAS  Google Scholar 

  • Melby PC (2002) Recent developments in leishmaniasis. Curr Opin Infect Dis 15(5):485–490

    PubMed  CAS  Google Scholar 

  • Melby PC, Yang YZ, Cheng J, Zhao W (1998) Regional differences in the cellular immune responses to experimental cutaneous or visceral infection with Leishmania donovani. Infect Immun 66(1):18–27

    PubMed  CAS  Google Scholar 

  • Menon JN, Bretscher PA (1998) Parasite dose determines the Th1/Th2 nature of the response to Leishmania major independently of infection route and strain of host or parasite. Eur J Immunol 28(12):4020–4028

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay S, Bhattacharyya S, Majhi R, De T, Naskar K, Majumdar S, Roy S (2000) Use of an attenuated leishmanial parasite as an immunoprophylactic and immunotherapeutic agent against murine visceral leishmaniasis. Clin Diagn Lab Immunol 7(2):233–240

    Article  PubMed  CAS  Google Scholar 

  • Nadim A, Javadian E (1988) Leishmanization in the Islamic Republic of Iran. In: Walton BC, Wijayaratne PM, Modabber F (eds) Research on control strategies for control of leishmaniasis. International Development Research Center, Ottawa, pp 336–369

    Google Scholar 

  • Nossal GJ (1988) Triumphs and trials of immunology in the 1980s. Immunol Today 9(10):286–291

    Article  PubMed  CAS  Google Scholar 

  • Nuwayri-Salti N, Matta M, Shbaklo Z, Lakkis M, Kabbani ZE (1998) Behavior in a mouse model of isolates of Leishmania donovani sensu lato cultured from the blood of patients with chronic cutaneous lesions. Am J Trop Med Hyg 58(6):710–714

    PubMed  CAS  Google Scholar 

  • O’Garra A, Murphy K (1994) Role of cytokines in determining T-lymphocyte function. Curr Opin Immunol 6(3):458–466

    Article  PubMed  CAS  Google Scholar 

  • Rao RR, Mahajan RC, Ganguly NK (1984) Modified media for in vitro cultivation of Leishmania promastigotes. A Comparative study. Bull PGI 18:125–128

    Google Scholar 

  • Rolao N, Melo C, Campino L (2004) Influence of the inoculation route in BALB/c mice infected by Leishmania infantum. Acta Trop 90(1):123–126

    Article  PubMed  Google Scholar 

  • Saha S, Mondal S, Banerjee A, Ghose J, Bhowmick S, Ali N (2006) Immune responses in kala-azar. Indian J Med Res 123(3):245–266

    PubMed  CAS  Google Scholar 

  • Sukumaran B, Madhubala R (2004) Leishmaniasis: current status of vaccine development. Curr Mol Med 4(6):667–679

    Article  PubMed  CAS  Google Scholar 

  • Tripathi P, Singh V, Naik S (2007) Immune response to Leishmania: paradox rather than paradigm. FEMS Immunol Med Microbiol 51(2):229–242

    Article  PubMed  CAS  Google Scholar 

  • Ulczak OM, Blackwell JM (1983) Immunoregulation of genetically controlled acquired responses to Leishmania donovani infection in mice: the effects of parasite dose, cyclophosphamide and sublethal irradiation. Parasite Immunol 5(5):449–463

    Article  PubMed  CAS  Google Scholar 

  • Uzonna JE, Joyce KL, Scott P (2004) Low dose Leishmania major promotes a transient T helper cell type 2 response that is down-regulated by interferon gamma-producing CD8+ T cells. J Exp Med 199(11):1559–1566

    Article  PubMed  CAS  Google Scholar 

  • Van Regenmortel MH (1989) Structural and functional approaches to the study of protein antigenicity. Immunol Today 10(8):266–272

    Article  PubMed  Google Scholar 

  • Wenner CA, Guler ML, Macatonia SE, O’Garra A, Murphy KM (1996) Roles of IFN-gamma and IFN-alpha in IL-12-induced T helper cell-1 development. J Immunol 156(4):1442–1447

    PubMed  CAS  Google Scholar 

  • Wilson ME, Innes DJ, Sousa AD, Pearson RD (1987) Early histopathology of experimental infection with Leishmania donovani in hamsters. J Parasitol 73(1):55–63

    Article  PubMed  CAS  Google Scholar 

  • Yadav M, Nagill R, Kaur S (2004) Leishmania donovani: Effect of pH on the infectivity of axenic amastigotes. J Parasit Dis 28(2):90–95

    Google Scholar 

Download references

Acknowledgement

The authors hereby declare that the experiments comply with the current laws in India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhbir Kaur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, S., Kaur, T., Garg, N. et al. Effect of dose and route of inoculation on the generation of CD4+ Th1/Th2 type of immune response in murine visceral leishmaniasis. Parasitol Res 103, 1413–1419 (2008). https://doi.org/10.1007/s00436-008-1150-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-008-1150-x

Keywords

Navigation