Skip to main content
Log in

Distinct roles of the pepper hypersensitive induced reaction protein gene CaHIR1 in disease and osmotic stress, as determined by comparative transcriptome and proteome analyses

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

A Capsicum annuum hypersensitive induced reaction protein1 (CaHIR1) was recently proposed as a positive regulator of hypersensitive cell death in plants. Overexpression of CaHIR1 in transgenic Arabidopsis plants conferred enhanced resistance against the hemi-biotrophic Pseudomonas syringae pv. tomato (Pst) and the biotrophic Hyaloperonospora parasitica. Infection by avirulent Pseudomonas strains carrying avrRpm1 or avrRpt2 caused enhanced resistance responses in transgenic plants, suggesting that CaHIR1 is involved in basal disease resistance in a race-nonspecific manner. H. parasitica exhibited low levels of asexual sporulation on CaHIR1 seedlings. In contrast, transgenic plants were susceptible not only to the necrotrophic fungal pathogen Botrytis cinerea but were also sensitive to osmotic stress caused by high salinity and drought. To identify proteins whose expression was altered by CaHIR1 overexpression in Arabidopsis leaves, a quantitative comparative proteome analysis using two-dimensional gel electrophoresis coupled with mass spectrometry was performed. Of about 400 soluble proteins, 11 proteins involved in several metabolic pathways were up- or down-regulated by CaHIR1 overexpression. Genes encoding glycine decarboxylase (At2g35370) and an unidentified protein (At2g03440), which were strongly upregulated in CaHIR1-overexpressing Arabidopsis, were also differentially induced at the transcriptional level by Pst infection. Arabidopsis carbonic anhydrase (At3g01500), highly similar to tobacco salicylic acid-binding protein 3, was up-regulated by CaHIR1 overexpression. The activity of an anti-oxidant enzyme, cooper/zinc superoxide dismutase (At2g28190), was also attenuated in transgenic Arabidopsis by CaHIR1 overexpression. Together, these results suggest that CaHIR1 overexpression in Arabidopsis mediates plant responses to biotrophic, hemi-biotrophic and necrotrophic pathogens, as well as to osmotic stress in different ways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abarca D, Roldan, Martin M, Sabarter B (2001) Arabidopsis thaliana ecotype Cvi shows an increased tolerance to photo-oxidative stress and contains a new chloroplastic copper/zinc superoxide dismutase isoenzyme. J Exp Bot 52:1417–1425

    Article  PubMed  CAS  Google Scholar 

  • Alexander D, Goodman RM, Gut-Rella M, Glascock C, Weymann K, Friedrich L, Maddos D, Ahl-Goy P, Luntz T, Ward E, Ryals J (1993) Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc Natl Acad Sci USA 90:7327–7331

    Article  PubMed  CAS  Google Scholar 

  • Alfano JR, Collmer A (1996) Bacterial pathogens in plants: life up against the wall. Plant Cell 8:1683–1698

    Article  PubMed  CAS  Google Scholar 

  • Appel RD, Palagi PM, Walther D, Vargas JR, Sanchez JC, Ravier F, Pasquali C, Hochstrasser DF (1997) Melanie II—a third-generation software package for analysis of two-dimensional electrophoresis images: 1. Feature and user interface. Electrophoresis 18:2724–2734

    Article  PubMed  CAS  Google Scholar 

  • Audenaert K, De Meyer GB, Hofte MM (2002) Abscisic acid determines basal susceptibility of tomate to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol 128:491–501

    Article  PubMed  CAS  Google Scholar 

  • Berrocal-Lobo M, Molina A, Solano R (2002) Constitutive expression of ethylene-response-factor 1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J 29:23–32

    Article  PubMed  CAS  Google Scholar 

  • Bones AM, Rossiter JT (1996) The myrosinase-glucosinolate system, its organization and biochemistry. Physiol Planta 97:194–208

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471–481

    Article  PubMed  CAS  Google Scholar 

  • Caspar T, Huberm SC, Somerville C (1985) Alterations in growth, photosynthesis, and respiration in a starchless mutant of Arabidopsis thaliana (L.) deficient in chloroplast phosphoglucomutase activity. Plant Physiol 79:11–17

    PubMed  CAS  Google Scholar 

  • Chivasa S, Hamilton JM, Pringle RS, Ndimba BK, Simon WJ, Lindsey K, Slabas AR (2006) Proteomic analysis of differentially expressed proteins in fungal elicitor-treated Arabidopsis cell cultures. J Exp Bot 57:1553–1562

    Article  PubMed  CAS  Google Scholar 

  • Chung ES, Oho SK, Park MJ, Choi DI (2007) Expression and promoter analyses of pepper CaCDPK4 (Capsicum annuum calcium dependent protein kinase 4) during plant defense response to incompatible pathogen. Plant Pathol J 23:76–89

    Google Scholar 

  • Dangl J, Jones JDG (2001) Plant pathogens and integrated defense responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  • Dietrich RA, Delaney TP, Uknes SJ, Ward E, Ryals J, Dangl J (1994) Arabidopsis mutants simulating disease resistance response. Cell 77:565–578

    Article  PubMed  CAS  Google Scholar 

  • Dixon DP, Skipsey M, Grundy NM, Edwards R (2005) Stress-induced protein S-gluthathionylation in Arabidopsis. Plant Physiol 138:2233–2244

    Article  PubMed  CAS  Google Scholar 

  • Fernandez J, Gharahdaghi F, Mische SM (1998) Routine identification of proteins from sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels or polyvinyl difluoride membranes using matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Electrophoresis 19:1036–1045

    Article  PubMed  CAS  Google Scholar 

  • Ferrari S, Plontnikova JM, Lorenzo GD, Ausubel FM (2003) Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camelexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J 35:193–205

    Article  PubMed  CAS  Google Scholar 

  • Fujiki Y, Ito M, Nishida I, Watanabe A (2001) Leucine and its keto acid enhance the coordinated expression of genes for branched-chain amino acid catabolism in Aranbidopsis under sugar starvation. FEBS Lett 499:161–165

    Article  PubMed  CAS  Google Scholar 

  • Giovanelli J, Mudd SH, Datko AH (1985) Quantitative analysis of pathways of methionine metabolism and their regulation in Lemna. Plant Physiol 78:555–560

    PubMed  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez JC, Banerjee RV, Huang S, Sumner JS, Matthews RG (1992) Camparison of cabalamin-independent and cobalamin-dependent methionine synthase from Escherichia coli: Two solutions to the same chemical problem. Biochemistry 31:6045–6056

    Article  PubMed  CAS  Google Scholar 

  • Greenberg J (1996) Programmed cell death: a way of life for plants. Proc Natl Acad Sci USA 93:12094–12097

    Article  PubMed  CAS  Google Scholar 

  • Greenberg J, Yao N (2004) The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol 6:201–211

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JT, Guo A, Klessig DF, Ausuvel FM (1994) Programmed cell death in plants: A pathogen-triggered response activated coordinately with multiple defense function. Cell 77:551–563

    Article  PubMed  CAS  Google Scholar 

  • Gupta AS, Webb RP, Holaday AS, Allen RD (1993) Overexpression of superoxide dismutase protects plants from oxidative stress. Plant Physiol 103:1067–1073

    PubMed  Google Scholar 

  • Handfordt MG, Carr JP (2007) A defect in carbohydrate metabolism ameliorates symptom severity in virus-infected Arabidopsis thaliana. J Gen Virol 88:337–341

    Article  CAS  Google Scholar 

  • Heath MC (2002) Cellular interactions between biotrophic fungal pathogens and host and nonhost plants. Can J Plant Pathol 24:259–264

    Article  Google Scholar 

  • Holub EB, Beynon JL (1996) Symbiology of Mouse Ear Cress (Arabidopsis thaliana) and oomycetes. Adv Bot Res 24:228–273

    Google Scholar 

  • Holub EB, Beynon JL, Crute IR (1994) Phenotypic and genotypic characterization of interactions between isolates of Peronospora parasitica and accessions of Arabidopsis thaliana. Mol Plant Microbe Interact 7:223–229

    CAS  Google Scholar 

  • Johal GS, Hulbert S, Briggs SP (1995) Disease lesion mimic mutation of maize: a model for cell death in plants. Bioassays 17:685–692

    Article  Google Scholar 

  • Jones AME, Thomas V, Truman B, Lilley K, Mansfield J, Grant M (2004) Specific changes in the Arabidopsis proteome in response to bacterial challenge:differentiating basal and R-gene mediated resistance. Phytochemistry 65:1805–1816

    Article  PubMed  CAS  Google Scholar 

  • Jones AME, Thomas V, Bennett MH, Mansfield J, Grant M (2006) Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional changes in response to inoculation with Pseudomonas syringae. Plant Physiol 142:1603–1620

    Article  PubMed  CAS  Google Scholar 

  • Jung HW, Hwang BK (2007) The leucine-rich repeat (LRR) protein, CaLRR1, interacts with the hypersensitive induced reaction (HIR) protein, CaHIR1, and suppresses cell death induced by the CaHIR1 protein. Mol Plant Pathol 8:503–514

    Article  CAS  PubMed  Google Scholar 

  • Jung HW, Kim KD, Hwang BK (2005) Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene (CALTP1) and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environmental stresses. Planta 221:361–373

    Article  PubMed  CAS  Google Scholar 

  • Jwa NS, Park SG, Park CH, Kim SO, Ahn IP, Park SY, Yun CH, Lee YH (2000) Cloning and expression of a rice cDNA encoding a Lls1 homologue of maize. Plant Pathol J 16: 151–155

    Google Scholar 

  • Kamo M, Kawakami T, Miyatake N, Tsugita A (1995) Separation and characterization of Arabidopsis thaliana protein by two-dimensional electrophoresis. Electrophoresis 16:423–430

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Martin GB (2004) Molecular mechanisms involved in bacterial speck disease resistance of tomato. Plant Pathol J 20:7–12

    Google Scholar 

  • Kim HK, Kim YJ, Paek KH, Chun JI, Kim JK (2005) The phenotype of the soybean disease-lesion mimic (dlm) mutant is light-dependent and associated with chloroplast function. Plant Pathol J 21:395–401

    Google Scholar 

  • Knight H, Brandt S, Knight MR (1998) A history of stress alters drought calcium signaling pathway in Arabidopsis. Plant J 16:681–687

    Article  PubMed  CAS  Google Scholar 

  • Koch E, Slusarenko A (1990) Arabidopsis is susceptible to infection by downy mildew fungus. Plant Cell 2:437–445

    Article  PubMed  CAS  Google Scholar 

  • Kuzniak E, Sklodowska M (2005) Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Planta 222:192–200

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Lee J, Kim Y, Bae D, Kang KY, Yoon SC, Lim D (2004) Defining the plant disulfide proteome. Electrophoresis 25:532–541

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Kim SH, Jung YH, Kim JA, Lee MO, Choi PG, Choi W, Kim KN, Jwa NS (2005) Molecular cloning and functional analysis of rice (Oryza sativa L.) OsNDR1 on defense signaling pathway. Plant Pathol J 21: 149–157

    Google Scholar 

  • Lee SC, Choi HW, Hwang IS, Choi DS, Hwang BK (2006) Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta 224:1209–1225

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) Ethylene response factor1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178

    Article  PubMed  CAS  Google Scholar 

  • Lorrain S, Vailleau F, Balague C, Roby D (2003) Lesion mimic mutants:keys for deciphering cell death and defense pathways in plants? Trends Plant Sci 8:263–271

    Article  PubMed  CAS  Google Scholar 

  • Louda S, Mole S (1991) Glucosinolates, chemistry and ecology. In: Rosenthal GA, Berenbaum RM (Eds) Herbivores: their interactions with secondary plant metabolites, vol 1, 2nd edn. Academic, San Diego, pp 123–164

    Google Scholar 

  • Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl JL (2003) Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112:379–389

    Article  PubMed  CAS  Google Scholar 

  • Maleck K, Levine A, Euglen T, Morgan A, Schmid J, Lawton KA, Dangl JL, Deitrich RA (2004) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Gen 26:403–410

    Google Scholar 

  • Mittler R, Rizhsky L (2000) Transgene-induced lesion mimic. Plant Mol Biol 44:335–344

    Article  PubMed  CAS  Google Scholar 

  • Moeder W, del Pozo O, Navarre DA, Martin GB, Klessig DF (2007) Aconitase plays a role in regulation of resistance to oxidative stress and cell death in Arabidopsis and Nicotiana benthamiana. Plant Mol Biol 63:273–287

    Article  PubMed  CAS  Google Scholar 

  • Nadimpalli R, Yalpani N, Johal GS, Simmons CR (2000) Prohibitins, stomatins, and plant disease response genes compose a protein superfamily that controls cell proliferation, ion channel regulation, and death. J Biol Chem 185:29579–29586

    Article  Google Scholar 

  • Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262

    Article  PubMed  CAS  Google Scholar 

  • Oh SA, Park J, Lee GI, Paek KH, Nam HG (1997) Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J 12:527–535

    Article  PubMed  CAS  Google Scholar 

  • Oliver DJ, Neuburger M, Bourguignon J, Douce R (1990) Interaction between the component enzymes of the glycine decarboxylase multienzyme complex, Plant Physiol 94:833–839

    Article  PubMed  CAS  Google Scholar 

  • Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    Article  PubMed  CAS  Google Scholar 

  • Park JM (2005) The hypersensitive response. A cell death during disease resistance. Plant Pathol J 21:99–101

    Google Scholar 

  • Pennincks IA, Thomma BP, Buchala A, Metraux JP, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–21113

    Article  Google Scholar 

  • Penninckx IA, Eggermont K, Terras FR, Thomma BP, DeSamlanx GW, Buchala A, Metraux JP, Manners JM, Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309–2323

    Article  PubMed  CAS  Google Scholar 

  • Reignault P, Frost LN, Richardson H, Daniels MJ, Jones JD, Parker JE (1996) Four Arabidopsis RPP loci controlling resistance to the Noco2 isolate of Peronospora parasitica map to regions known to contain other RPP recognition specificities. Mol Plant Microbe Interact 9:464–473

    PubMed  CAS  Google Scholar 

  • Rostoks N, Schmierer D, Kudrnal D, Kleinhofs A (2003) Barley putative hypersensitive induced reaction genes: genetic mapping, sequence analyses and differential expression in disease lesion mimic mutants. Theol Appl Gen 107:1094–1101

    Article  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    Article  PubMed  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins in silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  PubMed  CAS  Google Scholar 

  • Slaymaker DH, Navarre DA, Clark D, del Pozo O, Martin GB, Klessig DF (2002) The tobacco salicylic acid-binding proteins 3 (SABP3) is the chloroplast carbonic anhydase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci USA 99:11640–11645

    Article  PubMed  CAS  Google Scholar 

  • Takahashi A, Kawasaki T, Henmi K, Shi IK, Kodama O, Satoh H, Shimamoto K (1999) Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant J 17:535–545

    Article  PubMed  CAS  Google Scholar 

  • Tecsi LI, Maule AJ, Smith AM, Leegoof RC (1994) Complex, localized changes in CO2 assimilation and starch content associated with the susceptible interaction between cucumber mosaic virus and a cucurbit host. Plant J 5:837–847

    Article  CAS  Google Scholar 

  • Thomma BPHJ, Eggermont K, Pennincks IAMA, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jsamonate-dependent and salicylate-dependent defense response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111

    Article  PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Eggermont K, Tierens KFMJ, Broekaert WF (1999) Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 121:1093–1101

    Article  PubMed  CAS  Google Scholar 

  • Vailleau F, Daniel X, Tronchet M, Montillet JL, Triantaphylides C, Roby D (2002) A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. Proc Natl Acad Sci USA 99:10179–10184

    Article  PubMed  CAS  Google Scholar 

  • Veronese P, Nakagami H, Bluhm B, AbuQamar S, Chen X, Salmeron J, Dietrich R A, Hirt H, Mengiste T (2006) The membrane-anchored Botrytis-induced kinase 1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 18:257–273

    Article  PubMed  CAS  Google Scholar 

  • Walbot V, Hoisington DA, Neuffer MG (1983) Disease lesion mimics in maize. In: Kosuge T, Meredith C (Eds) Genetic engineering of plants. Plenum, New York, pp. 431–442

    Google Scholar 

  • Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, Gershenzon J, Vogel H (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci USA 101:4859–4864

    Article  PubMed  CAS  Google Scholar 

  • Wolter M, Hollricher K, Salamini F, Schulze-Lefert P (1993) The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defense mimic phenotype. Mol Gen Genet 239:122–128

    PubMed  CAS  Google Scholar 

  • Xiao F, Tang X, Zhou J (2001) Expression of 35S::Pto globally activates defense-related genes in tomato plants. Plant Physiol 126:1637–1645

    Article  PubMed  CAS  Google Scholar 

  • Yeaman SJ (1989) The 2-oxo acid dehydrogenase complex: recent advances. Biochem J 257:625–632

    PubMed  CAS  Google Scholar 

  • Zhou J, Loh YT, Bressen RA, Martin GB (1995) The tomato gene Pti encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell 83:925–935

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant (CG1133) from the Crop Functional Genomics Center of the twenty-first century, the Frontier Research Program funded by the Ministry of Science and Technology of the Republic of Korea, a grant from the Center for Plant Molecular Genetics and Breeding Research, Seoul National University, Korea and grants (20070401-034-028 and 20050401-034-714-007-01-00) from the BioGreen21 Program, Rural Development Administration, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Kook Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, H.W., Lim, C.W., Lee, S.C. et al. Distinct roles of the pepper hypersensitive induced reaction protein gene CaHIR1 in disease and osmotic stress, as determined by comparative transcriptome and proteome analyses. Planta 227, 409–425 (2008). https://doi.org/10.1007/s00425-007-0628-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0628-6

Keywords

Navigation